Front End Web Development

The Layout Maestro Course

Css Tricks - Fri, 07/11/2025 - 7:07am

Layout. It’s one of those easy-to-learn, difficult-to-master things, like they say about playing bass. Not because it’s innately difficult to, say, place two elements next to each other, but because there are many, many ways to tackle it. And layout is one area of CSS that seems to evolve more than others, as we’ve seen in the past 10-ish years with the Flexbox, CSS Grid, Subgrid, and now Masonry to name but a few. May as well toss in Container Queries while we’re at it. And reading flow. And…

That’s a good way to start talking about a new online course that Ahmad Shadeed is planning to release called The Layout Maestro. I love that name, by the way. It captures exactly how I think about working with layouts: orchestrating how and where things are arranged on a page. Layouts are rarely static these days. They are expected to adapt to the user’s context, not totally unlike a song changing keys.

Ahmad is the perfect maestro to lead a course on layout, as he does more than most when it comes to experimenting with layout features and demonstrating practical use cases, as you may have already seen in his thorough and wildly popular interactive guides on Container Queries, grid areas, box alignment, and positioning (just to name a few).

The course is still in development, but you can get a leg up and sign up to be notified by email when it’s ready. That’s literally all of the information I have at this point, but I still feel compelled to share it and encourage you to sign up for updates because I know few people more qualified to wax on about CSS layout than Ahmad and am nothing but confident that it will be great, worth the time, and worth the investment.

I’m also learning that I have a really hard time typing “maestro” correctly. 🤓

The Layout Maestro Course originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Better CSS Shapes Using shape() — Part 4: Close and Move

Css Tricks - Mon, 07/07/2025 - 2:48am

This is the fourth post in a series about the new CSS shape() function. So far, we’ve covered the most common commands you will use to draw various shapes, including lines, arcs, and curves. This time, I want to introduce you to two more commands: close and move. They’re fairly simple in practice, and I think you will rarely use them, but they are incredibly useful when you need them.

Better CSS Shapes Using shape()
  1. Lines and Arcs
  2. More on Arcs
  3. Curves
  4. Close and Move (you are here!)
The close command

In the first part, we said that shape() always starts with a from command to define the first starting point but what about the end? It should end with a close command.

But you never used any close command in the previous articles!?

That’s true. I never did because I either “close” the shape myself or rely on the browser to “close” it for me. Said like that, it’s a bit confusing, but let’s take a simple example to better understand:

clip-path: shape(from 0 0, line to 100% 0, line to 100% 100%)

If you try this code, you will get a triangle shape, but if you look closely, you will notice that we have only two line commands whereas, to draw a triangle, we need a total of three lines. The last line between 100% 100% and 0 0 is implicit, and that’s the part where the browser is closing the shape for me without having to explicitly use a close command.

I could have written the following:

clip-path: shape(from 0 0, line to 100% 0, line to 100% 100%, close)

Or instead, define the last line by myself:

clip-path: shape(from 0 0, line to 100% 0, line to 100% 100%, line to 0 0)

But since the browser is able to close the shape alone, there is no need to add that last line command nor do we need to explicitly add the close command.

This might lead you to think that the close command is useless, right? It’s true in most cases (after all, I have written three articles about shape() without using it), but it’s important to know about it and what it does. In some particular cases, it can be useful, especially if used in the middle of a shape.

CodePen Embed Fallback

In this example, my starting point is the center and the logic of the shape is to draw four triangles. In the process, I need to get back to the center each time. So, instead of writing line to center, I simply write close and the browser will automatically get back to the initial point!

Intuitively, we should write the following:

clip-path: shape( from center, line to 20% 0, hline by 60%, line to center, /* triangle 1 */ line to 100% 20%, vline by 60%, line to center, /* triangle 2 */ line to 20% 100%, hline by 60%, line to center, /* triangle 3 */ line to 0 20%, vline by 60% /* triangle 4 */ )

But we can optimize it a little and simply do this instead:

clip-path: shape( from center, line to 20% 0, hline by 60%, close, line to 100% 20%, vline by 60%, close, line to 20% 100%, hline by 60%, close, line to 0 20%, vline by 60% )

We write less code, sure, but another important thing is that if I update the center value with another position, the close command will follow that position.

CodePen Embed Fallback

Don’t forget about this trick. It can help you optimize a lot of shapes by writing less code.

The move command

Let’s turn our attention to another shape() command you may rarely use, but can be incredibly useful in certain situations: the move command.

Most times when we need to draw a shape, it’s actually one continuous shape. But it may happen that our shape is composed of different parts not linked together. In these situations, the move command is what you will need.

Let’s take an example, similar to the previous one, but this time the triangles don’t touch each other:

CodePen Embed Fallback

Intuitively, we may think we need four separate elements, with its own shape() definition. But the that example is a single shape!

The trick is to draw the first triangle, then “move” somewhere else to draw the next one, and so on. The move command is similar to the from command but we use it in the middle of shape().

clip-path: shape( from 50% 40%, line to 20% 0, hline by 60%, close, /* triangle 1 */ move to 60% 50%, line to 100% 20%, vline by 60%, close, /* triangle 2 */ move to 50% 60%, line to 20% 100%, hline by 60%, close, /* triangle 3 */ move to 40% 50%, line to 0 20%, vline by 60% /* triangle 4 */ )

After drawing the first triangle, we “close” it and “move” to a new point to draw the next triangle. We can have multiple shapes using a single shape() definition. A more generic code will look like the below:

clip-path: shape( from X1 Y1, ..., close, /* shape 1 */ move to X2 Y2, ..., close, /* shape 2 */ ... move to Xn Yn, ... /* shape N */ )

The close commands before the move commands aren’t mandatory, so the code can be simplified to this:

clip-path: shape( from X1 Y1, ..., /* shape 1 */ move to X2 Y2, ..., /* shape 2 */ ... move to Xn Yn, ... /* shape N */ ) CodePen Embed Fallback

Let’s look at a few interesting use cases where this technique can be helpful.

Cut-out shapes

Previously, I shared a trick on how to create cut-out shapes using clip-path: polygon(). Starting from any kind of polygon, we can easily invert it to get its cut-out version:

CodePen Embed Fallback

We can do the same using shape(). The idea is to have an intersection between the main shape and the rectangle shape that fits the element boundaries. We need two shapes, hence the need for the move command.

The code is as follows:

.shape { clip-path: shape(from ...., move to 0 0, hline to 100%, vline to 100%, hline to 0); }

You start by creating your main shape and then you “move” to 0 0 and you create the rectangle shape (Remember, It’s the first shape we create in the first part of this series). We can even go further and introduce a CSS variable to easily switch between the normal shape and the inverted one.

.shape { clip-path: shape(from .... var(--i,)); } .invert { --i:,move to 0 0, hline to 100%, vline to 100%, hline to 0; }

By default, --i is not defined so var(--i,)will be empty and we get the main shape. If we define the variable with the rectangle shape, we get the inverted version.

Here is an example using a rounded hexagon shape:

CodePen Embed Fallback

In reality, the code should be as follows:

.shape { clip-path: shape(evenodd from .... var(--i,)); } .invert { --i:,move to 0 0, hline to 100%, vline to 100%, hline to 0; }

Notice the evenodd I am adding at the beginning of shape(). I won’t bother you with a detailed explanation on what it does but in some cases, the inverted shape is not visible and the fix is to add evenodd at the beginning. You can check the MDN page for more details.

Another improvement we can do is to add a variable to control the space around the shape. Let’s suppose you want to make the hexagon shape of the previous example smaller. It‘s tedious to update the code of the hexagon but it’s easier to update the code of the rectangle shape.

.shape { clip-path: shape(evenodd from ... var(--i,)) content-box; } .invert { --d: 20px; padding: var(--d); --i: ,move to calc(-1*var(--d)) calc(-1*var(--d)), hline to calc(100% + var(--d)), vline to calc(100% + var(--d)), hline to calc(-1*var(--d)); }

We first update the reference box of the shape to be content-box. Then we add some padding which will logically reduce the area of the shape since it will no longer include the padding (nor the border). The padding is excluded (invisible) by default and here comes the trick where we update the rectangle shape to re-include the padding.

That is why the --i variable is so verbose. It uses the value of the padding to extend the rectangle area and cover the whole element as if we didn’t have content-box.

CodePen Embed Fallback

Not only you can easily invert any kind of shape, but you can also control the space around it! Here is another demo using the CSS-Tricks logo to illustrate how easy the method is:

CodePen Embed Fallback

This exact same example is available in my SVG-to-CSS converter, providing you with the shape() code without having to do all of the math.

Repetitive shapes

Another interesting use case of the move command is when we need to repeat the same shape multiple times. Do you remember the difference between the by and the to directives? The by directive allows us to define relative coordinates considering the previous point. So, if we create our shape using only by, we can easily reuse the same code as many times as we want.

Let’s start with a simple example of a circle shape:

clip-path: shape(from X Y, arc by 0 -50px of 1%, arc by 0 50px of 1%)

Starting from X Y, I draw a first arc moving upward by 50px, then I get back to X Y with another arc using the same offset, but downward. If you are a bit lost with the syntax, try reviewing Part 1 to refresh your memory about the arc command.

How I drew the shape is not important. What is important is that whatever the value of X Y is, I will always get the same circle but in a different position. Do you see where I am going with this idea? If I want to add another circle, I simply repeat the same code with a different X Y.

clip-path: shape( from X1 Y1, arc by 0 -50px of 1%, arc by 0 50px of 1%, move to X2 Y2, arc by 0 -50px of 1%, arc by 0 50px of 1% )

And since the code is the same, I can store the circle shape into a CSS variable and draw as many circles as I want:

.shape { --sh:, arc by 0 -50px of 1%, arc by 0 50px of 1%; clip-path: shape( from X1 Y1 var(--sh), move to X2 Y2 var(--sh), ... move to Xn Yn var(--sh) ) }

You don’t want a circle? Easy, you can update the --sh variable with any shape you want. Here is an example with three different shapes:

CodePen Embed Fallback

And guess what? You can invert the whole thing using the cut-out technique by adding the rectangle shape at the end:

CodePen Embed Fallback

This code is a perfect example of the shape() function’s power. We don’t have any code duplication and we can simply adjust the shape with CSS variables. This is something we are unable to achieve with the path() function because it doesn’t support variables.

Conclusion

That’s all for this fourth installment of our series on the CSS shape() function! We didn’t make any super complex shapes, but we learned how two simple commands can open a lot of possibilities of what can be done using shape().

Just for fun, here is one more demo recreating a classic three-dot loader using the last technique we covered. Notice how much further we could go, adding things like animation to the mix:

CodePen Embed Fallback Better CSS Shapes Using shape()
  1. Lines and Arcs
  2. More on Arcs
  3. Curves
  4. Close and Move (you are here!)

Better CSS Shapes Using shape() — Part 4: Close and Move originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

The Gap Strikes Back: Now Stylable

Css Tricks - Tue, 07/01/2025 - 2:42am

Four years ago, I wrote an article titled Minding the “gap”, where I talked about the CSS gap property, where it applied, and how it worked with various CSS layouts.

At the time, I described how easy it was to evenly space items out in a flex, grid, or multi-column layout, by using the gap property. But, I also said that styling the gap areas was much harder, and I shared a workaround.

However, workarounds like using extra HTML elements, pseudo-elements, or borders to draw separator lines tend to come with drawbacks, especially those that impact your layout size, interfere with assistive technologies, or pollute your markup with style-only elements.

Today, I’m writing again about layout gaps, but this time, to tell you all about a new and exciting CSS feature that’s going to change it all. What you previously had to use workarounds for, you’ll soon be able to do with just a few simple CSS properties that make it easy, yet also flexible, to display styled separators between your layout items.

There’s already a specification draft for the feature you can peruse. At the time I’m writing this, it is available in Chrome and Edge 139 behind a flag. But I believe it won’t be long before we turn that flag on. I believe other browsers are also very receptive and engaged.

Displaying decorative lines between items of a layout can make a big difference. When used well, these lines can bring more structure to your layout, and give your users more of a sense of how the different regions of a page are organized.

Introducing CSS gap decorations

If you’ve ever used a multi-column layout, such as by using the column-width property, then you might already be familiar with gap decorations. You can draw vertical lines between the columns of a multi-column layout by using the column-rule property:

article { column-width: 20rem; column-rule: 1px solid black; }

The CSS gap decorations feature builds on this to provide a more comprehensive system that makes it easy for you to draw separator lines in other layout types.

For example, the draft specification says that the column-rule property also works in flexbox and grid layouts:

.my-grid-container { display: grid; gap: 2px; column-rule: 2px solid pink; }

No need for extra elements or borders! The key benefit here is that the decoration happens in CSS only, where it belongs, with no impacts to your semantic markup.

The CSS gap decorations feature also introduces a new row-rule property for drawing lines between rows:

.my-flex-container { display: flex; gap: 10px; row-rule: 10px dotted limegreen; column-rule: 5px dashed coral; }

But that’s not all, because the above syntax also allows you to define multiple, comma-separated, line style values, and use the same repeat() function that CSS grid already uses for row and column templates. This makes it possible to define different styles of line decorations in a single layout, and adapt to an unknown number of gaps:

.my-container { display: grid; gap: 2px; row-rule: repeat(2, 1px dashed red), 2px solid black, repeat(auto, 1px dotted green); }

Finally, the CSS gap decorations feature comes with additional CSS properties such as row-rule-break, column-rule-break, row-rule-outset, column-rule-outset, and gap-rule-paint-order, which make it possible to precisely customize the way the separators are drawn, whether they overlap, or where they start and end.

And of course, all of this works across grid, flexbox, multi-column, and soon, masonry!

Browser support

Currently, the CSS gap decorations feature is only available in Chromium-based browsers.

The feature is still early in the making, and there’s time for you all to try it and to provide feedback that could help make the feature better and more adapted to your needs.

If you want to try the feature today, make sure to use Edge or Chrome, starting with version 139 (or another Chromium-based browser that matches those versions), and enable the flag by following these steps:

  1. In Chrome or Edge, go to about://flags.
  2. In the search field, search for Enable Experimental Web Platform Features.
  3. Enable the flag.
  4. Restart the browser.

To put this all into practice, let’s walk through an example together that uses the new CSS gap decorations feature. I also have a final example you can demo.

Using CSS gap decorations

Let’s build a simple web page to learn how to use the feature. Here is what we’ll be building:

The above layout contains a header section with a title, a navigation menu with a few links, a main section with a series of short paragraphs of text and photos, and a footer.

We’ll use the following markup:

<body> <header> <h1>My personal site</h1> </header> <nav> <ul> <li><a href="#">Home</a></li> <li><a href="#">Blog</a></li> <li><a href="#">About</a></li> <li><a href="#">Links</a></li> </ul> </nav> <main> <article> <p>...</p> </article> <article> <img src="cat.jpg" alt="A sleeping cat."> </article> <article> <p>...</p> </article> <article> <img src="tree.jpg" alt="An old olive tree trunk."> </article> <article> <p>...</p> </article> <article> <p>...</p> </article> <article> <p>...</p> </article> <article> <img src="strings.jpg" alt="Snow flakes falling in a motion blur effect."> </article> </main> <footer> <p>© 2025 Patrick Brosset</p> </footer> </body>

We’ll start by making the <body> element be a grid container. This way, we can space out the <header>, <nav>, <main>, and <footer> elements apart in one go by using the gap property:

body { display: grid; gap: 4rem; margin: 2rem; }

Let’s now use the CSS gap decorations feature to display horizontal separator lines within the gaps we just defined:

body { display: grid; gap: 4rem; margin: 2rem; row-rule: 1rem solid #efefef; }

This gives us the following result:

We can do a bit better by making the first horizontal line look different than the other two lines, and simplify the row-rule value by using the repeat() syntax:

body { display: grid; gap: 4rem; margin: 2rem; row-rule: 1rem solid #efefef, repeat(2, 2px solid #efefef); }

With this new row-rule property value, we’re telling the browser to draw the first horizontal separator as a 1rem thick line, and the next two separators as 2px thick lines, which gives the following result:

Now, let’s turn our attention to the navigation element and its list of links. We’ll use flexbox to display the links in a single row, where each link is separated from the other links by a gap and a vertical line:

nav ul { display: flex; flex-wrap: wrap; gap: 2rem; column-rule: 2px dashed #666; }

Very similarly to how we used the row-rule property before, we’re now using the column-rule property to display a dashed 2px thick separator between the links.

Our example web page now looks like this:

The last thing we need to change is the <main> element and its paragraphs and pictures. We’ll use flexbox again and display the various children in a wrapping row of varying width items:

main { display: flex; flex-wrap: wrap; gap: 4rem; } main > * { flex: 1 1 200px; } main article:has(p) { flex-basis: 400px; }

In the above code snippet, we’re setting the <main> element to be a wrapping flex container with a 4rem gap between items and flex lines. We’re also making the items have a flex basis size of 200px for pictures and 400px for text, and allowing them to grow and shrink as needed. This gives us the following result:

Let’s use CSS gap decorations to bring a little more structure to our layout by drawing 2px thick separator lines between the rows and columns of the layout:

main { display: flex; flex-wrap: wrap; gap: 4rem; row-rule: 2px solid #999; column-rule: 2px solid #999; }

This gives us the following result, which is very close to our expected design:

The last detail we want to change is related to the vertical lines. We don’t want them to span across the entire height of the flex lines but instead start and stop where the content starts and stops.

With CSS gap decorations, we can easily achieve this by using the column-rule-outset property to fine-tune exactly where the decorations start and end, relative to the gap area:

main { display: flex; flex-wrap: wrap; gap: 4rem; row-rule: 2px solid #999; column-rule: 2px solid #999; column-rule-outset: 0; }

The column-rule-outset property above makes the vertical column separators span the height of each row, excluding the gap area, which is what we want:

And with that, we’re done with our example. Check out the live example, and source code.

Learn more

There’s more to the feature and I mentioned a couple more CSS properties earlier

  • gap-rule-paint-order, which lets you control which of the decorations, rows or columns, appear above the other ones.
  • row-rule-break / column-rule-break, which sets the behavior of the decoration lines at intersections. In particular, whether they are made of multiple segments, which start and end at intersections, or single, continuous lines.

Because the feature is new, there isn’t MDN documentation about it yet. So to learn more, check out:

The Edge team has also created an interactive playground where you can use visual controls to configure gap decorations.

And, of course, the reason this is all implemented behind a flag is to elicit feedback from developers like you! If you have any feedback, questions, or bugs about this feature, I definitely encourage you to open a new ticket on the Chromium issue tracker.

The Gap Strikes Back: Now Stylable originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Using CSS Cascade Layers With Tailwind Utilities

Css Tricks - Mon, 06/30/2025 - 3:16am

Adam Wathan has (very cleverly) built Tailwind with CSS Cascade Layers, making it extremely powerful for organizing styles by priority.

@layer theme, base, components, utilities; @import 'tailwindcss/theme.css' layer(theme); @import 'tailwindcss/utilities.css' layer(utilities);

The core of Tailwind are its utilities. This means you have two choices:

  1. The default choice
  2. The unorthodox choice
The default choice

The default choice is to follow Tailwind’s recommended layer order: place components first, and Tailwind utilities last.

So, if you’re building components, you need to manually wrap your components with a @layer directive. Then, overwrite your component styles with Tailwind, putting Tailwind as the “most important layer”.

/* Write your components */ @layer components { .component { /* Your CSS here */ } } <!-- Override with Tailwind utilities --> <div class="component p-4"> ... </div>

That’s a decent way of doing things.

But, being the bad boy I am, I don’t take the default approach as the “best” one. Over a year of (major) experimentation with Tailwind and vanilla CSS, I’ve come across what I believe is a better solution.

The Unorthodox Choice

Before we go on, I have to tell you that I’m writing a course called Unorthodox Tailwind — this shows you everything I know about using Tailwind and CSS in synergistic ways, leveraging the strengths of each.

Shameless plug aside, let’s dive into the Unorthodox Choice now.

In this case, the Unorthodox Choice is to write your styles in an unnamed layer — or any layer after utilities, really — so that your CSS naturally overwrites Tailwind utilities.

Of these two, I prefer the unnamed layer option:

/* Unnamed layer option */ @layer theme, base, components, utilities; /* Write your CSS normally here */ .component { /* ... */ } /* Named layer option */ /* Use whatever layer name you come up with. I simply used css here because it made most sense for explaining things */ @layer theme, base, components, utilities, css; @layer css { .component { /* ... */ } }

I have many reasons why I do this:

  1. I don’t like to add unnecessary CSS layers because it makes code harder to write — more keystrokes, having to remember the specific layer I used it in, etc.
  2. I’m pretty skilled with ITCSS, selector specificity, and all the good-old-stuff you’d expect from a seasoned front-end developer, so writing CSS in a single layer doesn’t scare me at all.
  3. I can do complex stuff that are hard or impossible to do in Tailwind (like theming and animations) in CSS.

Your mileage may vary, of course.

Now, if you have followed my reasoning so far, you would have noticed that I use Tailwind very differently:

  • Tailwind utilities are not the “most important” layer.
  • My unnamed CSS layer is the most important one.

I do this so I can:

  • Build prototypes with Tailwind (quickly, easily, especially with the tools I’ve created).
  • Shift these properties to CSS when they get more complex — so I don’t have to read messy utility-littered HTML that makes my heart sink. Not because utility HTML is bad, but because it takes lots of brain processing power to figure out what’s happening.

Finally, here’s the nice thing about Tailwind being in a utility layer: I can always !important a utility to give it strength.

<!-- !important the padding utility --> <div class="component !p-4"> ... </div>

Whoa, hold on, wait a minute! Isn’t this wrong, you might ask?

Nope. The !important keyword has traditionally been used to override classes. In this case, we’re leveraging on the !important feature in CSS Layers to say the Tailwind utility is more important than any CSS in the unnamed layer.

This is perfectly valid and is a built-in feature for CSS Layers.

Besides, the !important is so explicit (and used so little) that it makes sense for one-off quick-and-dirty adjustments (without creating a brand new selector for it).

Tailwind utilities are more powerful than they seem

Tailwind utilities are not a 1:1 map between a class and a CSS property. Built-in Tailwind utilities mostly look like this so it can give people a wrong impression.

Tailwind utilities are more like convenient Sass mixins, which means we can build effective tools for layouts, theming, typography, and more, through them.

You can find out about these thoughts inside Unorthodox Tailwind.

Thanks for reading and I hope you’re enjoying a new way of looking at (or using) Tailwind!

Using CSS Cascade Layers With Tailwind Utilities originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

New business wanted

QuirksBlog - Thu, 09/30/2021 - 12:22am

Last week Krijn and I decided to cancel performance.now() 2021. Although it was the right decision it leaves me in financially fairly dire straits. So I’m looking for new jobs and/or donations.

Even though the Corona trends in NL look good, and we could probably have brought 350 people together in November, we cannot be certain: there might be a new flare-up. More serious is the fact that it’s very hard to figure out how to apply the Corona checks Dutch government requires, especially for non-EU citizens. We couldn’t figure out how UK and US people should be tested, and for us that was the straw that broke the camel’s back. Cancelling the conference relieved us of a lot of stress.

Still, it also relieved me of a lot of money. This is the fourth conference in a row we cannot run, and I have burned through all my reserves. That’s why I thought I’d ask for help.

So ...

Has QuirksMode.org ever saved you a lot of time on a project? Did it advance your career? If so, now would be a great time to make a donation to show your appreciation.

I am trying my hand at CSS coaching. Though I had only few clients so far I found that I like it and would like to do it more. As an added bonus, because I’m still writing my CSS for JavaScripters book I currently have most of the CSS layout modules in my head and can explain them straight away — even stacking contexts.

Or if there’s any job you know of that requires a technical documentation writer with a solid knowledge of web technologies and the browser market, drop me a line. I’m interested.

Anyway, thanks for listening.

position: sticky, draft 1

QuirksBlog - Wed, 09/08/2021 - 7:44am

I’m writing the position: sticky part of my book, and since I never worked with sticky before I’m not totally sure if what I’m saying is correct.

This is made worse by the fact that there are no very clear tutorials on sticky. That’s partly because it works pretty intuitively in most cases, and partly because the details can be complicated.

So here’s my draft 1 of position: sticky. There will be something wrong with it; please correct me where needed.

The inset properties are top, right, bottom and left. (I already introduced this terminology earlier in the chapter.)

h3,h4,pre {clear: left} section.scroll-container { border: 1px solid black; width: 300px; height: 250px; padding: 1em; overflow: auto; --text: 'scroll box'; float: left; clear: left; margin-right: 0.5em; margin-bottom: 1em; position: relative; font-size: 1.3rem; } .container,.outer-container { border: 1px solid black; padding: 1em; position: relative; --text: 'container'; } .outer-container { --text: 'outer container'; } :is(.scroll-container,.container,.outer-container):before { position: absolute; content: var(--text); top: 0.2em; left: 0.2em; font-size: 0.8rem; } section.scroll-container h2 { position: sticky; top: 0; background: white; margin: 0 !important; color: inherit !important; padding: 0.5em !important; border: 1px solid; font-size: 1.4rem !important; } .nowrap p { white-space: nowrap; } Introduction

position: sticky is a mix of relative and fixed. A sticky box takes its normal position in the flow, as if it had position: relative, but if that position scrolls out of view the sticky box remains in a position defined by its inset properties, as if it has position: fixed. A sticky box never escapes its container, though. If the container start or end scrolls past the sticky box abandons its fixed position and sticks to the top or the bottom of its container.

It is typically used to make sure that headers remain in view no matter how the user scrolls. It is also useful for tables on narrow screens: you can keep headers or the leftmost table cells in view while the user scrolls.

Scroll box and container

A sticky box needs a scroll box: a box that is able to scroll. By default this is the browser window — or, more correctly, the layout viewport — but you can define another scroll box by setting overflow on the desired element. The sticky box takes the first ancestor that could scroll as its scroll box and calculates all its coordinates relative to it.

A sticky box needs at least one inset property. These properties contain vital instructions, and if the sticky box doesn’t receive them it doesn’t know what to do.

A sticky box may also have a container: a regular HTML element that contains the sticky box. The sticky box will never be positioned outside this container, which thus serves as a constraint.

The first example shows this set-up. The sticky <h2> is in a perfectly normal <div>, its container, and that container is in a <section> that is the scroll box because it has overflow: auto. The sticky box has an inset property to provide instructions. The relevant styles are:

section.scroll-container { border: 1px solid black; width: 300px; height: 300px; overflow: auto; padding: 1em; } div.container { border: 1px solid black; padding: 1em; } section.scroll-container h2 { position: sticky; top: 0; } The rules Sticky header

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Now let’s see exactly what’s going on.

A sticky box never escapes its containing box. If it cannot obey the rules that follow without escaping from its container, it instead remains at the edge. Scroll down until the container disappears to see this in action.

A sticky box starts in its natural position in the flow, as if it has position: relative. It thus participates in the default flow: if it becomes higher it pushes the paragraphs below it downwards, just like any other regular HTML element. Also, the space it takes in the normal flow is kept open, even if it is currently in fixed position. Scroll down a little bit to see this in action: an empty space is kept open for the header.

A sticky box compares two positions: its natural position in the flow and its fixed position according to its inset properties. It does so in the coordinate frame of its scroll box. That is, any given coordinate such as top: 20px, as well as its default coordinates, is resolved against the content box of the scroll box. (In other words, the scroll box’s padding also constrains the sticky box; it will never move up into that padding.)

A sticky box with top takes the higher value of its top and its natural position in the flow, and positions its top border at that value. Scroll down slowly to see this in action: the sticky box starts at its natural position (let’s call it 20px), which is higher than its defined top (0). Thus it rests at its position in the natural flow. Scrolling up a few pixels doesn’t change this, but once its natural position becomes less than 0, the sticky box switches to a fixed layout and stays at that position.

The sticky box has bottom: 0

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Sticky header

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

It does the same for bottom, but remember that a bottom is calculated relative to the scroll box’s bottom, and not its top. Thus, a larger bottom coordinate means the box is positioned more to the top. Now the sticky box compares its default bottom with the defined bottom and uses the higher value to position its bottom border, just as before.

With left, it uses the higher value of its natural position and to position its left border; with right, it does the same for its right border, bearing in mind once more that a higher right value positions the box more to the left.

If any of these steps would position the sticky box outside its containing box it takes the position that just barely keeps it within its containing box.

Details Sticky header

Very, very long line of content to stretch up the container quite a bit

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

The four inset properties act independently of one another. For instance the following box will calculate the position of its top and left edge independently. They can be relative or fixed, depending on how the user scrolls.

p.testbox { position: sticky; top: 0; left: 0; }

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

The sticky box has top: 0; bottom: 0

Regular content

Regular content

Regular content

Regular content

Sticky header

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Setting both a top and a bottom, or both a left and a right, gives the sticky box a bandwidth to move in. It will always attempt to obey all the rules described above. So the following box will vary between 0 from the top of the screen to 0 from the bottom, taking its default position in the flow between these two positions.

p.testbox { position: sticky; top: 0; bottom: 0; } No container

Regular content

Regular content

Sticky header

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

So far we put the sticky box in a container separate from the scroll box. But that’s not necessary. You can also make the scroll box itself the container if you wish. The sticky element is still positioned with respect to the scroll box (which is now also its container) and everything works fine.

Several containers Sticky header

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside outer container

Content outside outer container

Or the sticky item can be several containers removed from its scroll box. That’s fine as well; the positions are still calculated relative to the scroll box, and the sticky box will never leave its innermost container.

Changing the scroll box Sticky header

The container has overflow: auto.

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside container

One feature that catches many people (including me) unaware is giving the container an overflow: auto or hidden. All of a sudden it seems the sticky header doesn’t work any more.

What’s going on here? An overflow value of auto, hidden, or scroll makes an element into a scroll box. So now the sticky box’s scroll box is no longer the outer element, but the inner one, since that is now the closest ancestor that is able to scroll.

The sticky box appears to be static, but it isn’t. The crux here is that the scroll box could scroll, thanks to its overflow value, but doesn’t actually do so because we didn’t give it a height, and therefore it stretches up to accomodate all of its contents.

Thus we have a non-scrolling scroll box, and that is the root cause of our problems.

As before, the sticky box calculates its position by comparing its natural position relative to its scroll box with the one given by its inset properties. Point is: the sticky box doesn’t scroll relative to its scroll box, so its position always remains the same. Where in earlier examples the position of the sticky element relative to the scroll box changed when we scrolled, it no longer does so, because the scroll box doesn’t scroll. Thus there is no reason for it to switch to fixed positioning, and it stays where it is relative to its scroll box.

The fact that the scroll box itself scrolls upward is irrelevant; this doesn’t influence the sticky box in the slightest.

Sticky header

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Regular content

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

Content outside container

One solution is to give the new scroll box a height that is too little for its contents. Now the scroll box generates a scrollbar and becomes a scrolling scroll box. When we scroll it the position of the sticky box relative to its scroll box changes once more, and it switches from fixed to relative or vice versa as required.

Minor items

Finally a few minor items:

  • It is no longer necessary to use position: -webkit-sticky. All modern browsers support regular position: sticky. (But if you need to cater to a few older browsers, retaining the double syntax doesn’t hurt.)
  • Chrome (Mac) does weird things to the borders of the sticky items in these examples. I don’t know what’s going on and am not going to investigate.

Breaking the web forward

QuirksBlog - Thu, 08/12/2021 - 5:19am

Safari is holding back the web. It is the new IE, after all. In contrast, Chrome is pushing the web forward so hard that it’s starting to break. Meanwhile web developers do nothing except moan and complain. The only thing left to do is to pick our poison.

blockquote { font-size: inherit; font-family: inherit; } blockquote p { font-size: inherit; font-family: inherit; } Safari is the new IE

Recently there was yet another round of “Safari is the new IE” stories. Once Jeremy’s summary and a short discussion cleared my mind I finally figured out that Safari is not IE, and that Safari’s IE-or-not-IE is not the worst problem the web is facing.

Perry Sun argues that for developers, Safari is crap and outdated, emulating the old IE of fifteen years ago in this respect. He also repeats the theory that Apple is deliberately starving Safari of features in order to protect the app store, and thus its bottom line. We’ll get back to that.

The allegation that Safari is holding back web development by its lack of support for key features is not new, but it’s not true, either. Back fifteen years ago IE held back the web because web developers had to cater to its outdated technology stack. “Best viewed with IE” and all that. But do you ever see a “Best viewed with Safari” notice? No, you don’t. Another browser takes that special place in web developers’ hearts and minds.

Chrome is the new IE, but in reverse

Jorge Arango fears we’re going back to the bad old days with “Best viewed in Chrome.” Chris Krycho reinforces this by pointing out that, even though Chrome is not the standard, it’s treated as such by many web developers.

“Best viewed in Chrome” squares very badly with “Safari is the new IE.” Safari’s sad state does not force web developers to restrict themselves to Safari-supported features, so it does not hold the same position as IE.

So I propose to lay this tired old meme to rest. Safari is not the new IE. If anything it’s the new Netscape 4.

Meanwhile it is Chrome that is the new IE, but in reverse.

Break the web forward

Back in the day, IE was accused of an embrace, extend, and extinguish strategy. After IE6 Microsoft did nothing for ages, assuming it had won the web. Thanks to web developers taking action in their own name for the first (and only) time, IE was updated once more and the web moved forward again.

Google learned from Microsoft’s mistakes and follows a novel embrace, extend, and extinguish strategy by breaking the web and stomping on the bits. Who cares if it breaks as long as we go forward. And to hell with backward compatibility.

Back in 2015 I proposed to stop pushing the web forward, and as expected the Chrome devrels were especially outraged at this idea. It never went anywhere. (Truth to tell: I hadn’t expected it to.)

I still think we should stop pushing the web forward for a while until we figure out where we want to push the web forward to — but as long as Google is in charge that won’t happen. It will only get worse.

On alert

A blog storm broke out over the decision to remove alert(), confirm() and prompt(), first only the cross-origin variants, but eventually all of them. Jeremy and Chris Coyier already summarised the situation, while Rich Harris discusses the uses of the three ancient modals, especially when it comes to learning JavaScript.

With all these articles already written I will only note that, if the three ancient modals are truly as horrendous a security issue as Google says they are it took everyone a bloody long time to figure that out. I mean, they turn 25 this year.

Although it appears Firefox and Safari are on board with at least the cross-origin part of the proposal, there is no doubt that it’s Google that leads the charge.

From Google’s perspective the ancient modals have one crucial flaw quite apart from their security model: they weren’t invented there. That’s why they have to be replaced by — I don’t know what, but it will likely be a very complicated API.

Complex systems and arrogant priests rule the web

Thus the new embrace, extend, and extinguish is breaking backward compatibility in order to make the web more complicated. Nolan Lawson puts it like this:

we end up with convoluted specs like Service Worker that you need a PhD to understand, and yet we still don't have a working <dialog> element.

In addition, Google can be pretty arrogant and condescending, as Chris Ferdinandi points out.

The condescending “did you actually read it, it’s so clear” refrain is patronizing AF. It’s the equivalent of “just” or “simply” in developer documentation.

I read it. I didn’t understand it. That’s why I asked someone whose literal job is communicating with developers about changes Chrome makes to the platform.

This is not isolated to one developer at Chrome. The entire message thread where this change was surfaced is filled with folks begging Chrome not to move forward with this proposal because it will break all-the-things.

If you write documentation or a technical article and nobody understands it, you’ve done a crappy job. I should know; I’ve been writing this stuff for twenty years.

Extend, embrace, extinguish. And use lots of difficult words.

Patience is a virtue

As a reaction to web dev outcry Google temporarily halted the breaking of the web. That sounds great but really isn’t. It’s just a clever tactical move.

I saw this tactic in action before. Back in early 2016 Google tried to break the de-facto standard for the mobile visual viewport that I worked very hard to establish. I wrote a piece that resonated with web developers, whose complaints made Google abandon the plan — temporarily. They tried again in late 2017, and I again wrote an article, but this time around nobody cared and the changes took effect and backward compatibility was broken.

So the three ancient modals still have about 12 to 18 months to live. Somewhere in late 2022 to early 2023 Google will try again, web developers will be silent, and the modals will be gone.

The pursuit of appiness

But why is Google breaking the web forward at such a pace? And why is Apple holding it back?

Safari is kept dumb to protect the app store and thus revenue. In contrast, the Chrome team is pushing very hard to port every single app functionality to the browser. Ages ago I argued we should give up on this, but of course no one listened.

When performing Valley Kremlinology, it is useful to see Google policies as stemming from a conflict between internal pro-web and anti-web factions. We web developers mainly deal with the pro-web faction, the Chrome devrel and browser teams. On the other hand, the Android team is squarely in the anti-web camp.

When seen in this light the pro-web camp’s insistence on copying everything appy makes excellent sense: if they didn’t Chrome would lag behind apps and the Android anti-web camp would gain too much power. While I prefer the pro-web over the anti-web camp, I would even more prefer the web not to be a pawn in an internal Google power struggle. But it has come to that, no doubt about it.

Solutions?

Is there any good solution? Not really.

Jim Nielsen feels that part of the issue is the lack of representation of web developers in the standardization process. That sounds great but is proven not to work.

Three years ago Fronteers and I attempted to get web developers represented and were met with absolute disinterest. Nobody else cared even one shit, and the initiative sank like a stone.

So a hypothetical web dev representative in W3C is not going to work. Also, the organisational work would involve a lot of unpaid labour, and I, for one, am not willing to do it again. Neither is anyone else. So this is not the solution.

And what about Firefox? Well, what about it? Ten years ago it made a disastrous mistake by ignoring the mobile web for way too long, then it attempted an arrogant and uninformed come-back with Firefox OS that failed, and its history from that point on is one long slide into obscurity. That’s what you get with shitty management.

Pick your poison

So Safari is trying to slow the web down. With Google’s move-fast-break-absofuckinglutely-everything axiom in mind, is Safari’s approach so bad?

Regardless of where you feel the web should be on this spectrum between Google and Apple, there is a fundamental difference between the two.

We have the tools and procedures to manage Safari’s disinterest. They’re essentially the same as the ones we deployed against Microsoft back in the day — though a fundamental difference is that Microsoft was willing to talk while Apple remains its old haughty self, and its “devrels” aren’t actually allowed to do devrelly things such as managing relations with web developers. (Don’t blame them, by the way. If something would ever change they’re going to be our most valuable internal allies — just as the IE team was back in the day.)

On the other hand, we have no process for countering Google’s reverse embrace, extend, and extinguish strategy, since a section of web devs will be enthusiastic about whatever the newest API is. Also, Google devrels talk. And talk. And talk. And provide gigs of data that are hard to make sense of. And refer to their proprietary algorithms that “clearly” show X is in the best interest of the web — and don’t ask questions! And make everything so fucking complicated that we eventually give up and give in.

So pick your poison. Shall we push the web forward until it’s broken, or shall we break it by inaction? What will it be? Privately, my money is on Google. So we should say goodbye to the old web while we still can.

Custom properties and @property

QuirksBlog - Wed, 07/21/2021 - 3:18am

You’re reading a failed article. I hoped to write about @property and how it is useful for extending CSS inheritance considerably in many different circumstances. Alas, I failed. @property turns out to be very useful for font sizes, but does not even approach the general applicability I hoped for.

Grandparent-inheriting

It all started when I commented on what I thought was an interesting but theoretical idea by Lea Verou: what if elements could inherit the font size of not their parent, but their grandparent? Something like this:

div.grandparent { /* font-size could be anything */ } div.parent { font-size: 0.4em; } div.child { font-size: [inherit from grandparent in some sort of way]; font-size: [yes, you could do 2.5em to restore the grandparent's font size]; font-size: [but that's not inheriting, it's just reversing a calculation]; font-size: [and it will not work if the parent's font size is also unknown]; }

Lea told me this wasn’t a vague idea, but something that can be done right now. I was quite surprised — and I assume many of my readers are as well — and asked for more information. So she wrote Inherit ancestor font-size, for fun and profit, where she explained how the new Houdini @property can be used to do this.

This was seriously cool. Also, I picked up a few interesting bits about how CSS custom properties and Houdini @property work. I decided to explain these tricky bits in simple terms — mostly because I know that by writing an explanation I myself will understand them better — and to suggest other possibilities for using Lea’s idea.

Alas, that last objective is where I failed. Lea’s idea can only be used for font sizes. That’s an important use case, but I had hoped for more. The reasons why it doesn’t work elsewhere are instructive, though.

Tokens and values

Let’s consider CSS custom properties. What if we store the grandparent’s font size in a custom property and use that in the child?

div.grandparent { /* font-size could be anything */ --myFontSize: 1em; } div.parent { font-size: 0.4em; } div.child { font-size: var(--myFontSize); /* hey, that's the grandparent's font size, isn't it? */ }

This does not work. The child will have the same font size as the parent, and ignore the grandparent. In order to understand why we need to understand how custom properties work. What does this line of CSS do?

--myFontSize: 1em;

It sets a custom property that we can use later. Well duh.

Sure. But what value does this custom property have?

... errr ... 1em?

Nope. The answer is: none. That’s why the code example doesn’t work.

When they are defined, custom properties do not have a value or a type. All that you ordered the browsers to do is to store a token in the variable --myFontSize.

This took me a while to wrap my head around, so let’s go a bit deeper. What is a token? Let’s briefly switch to JavaScript to explain.

let myVar = 10;

What’s the value of myVar in this line? I do not mean: what value is stored in the variable myVar, but: what value does the character sequence myVar have in that line of code? And what type?

Well, none. Duh. It’s not a variable or value, it’s just a token that the JavaScript engine interprets as “allow me to access and change a specific variable” whenever you type it.

CSS custom properties also hold such tokens. They do not have any intrinsic meaning. Instead, they acquire meaning when they are interpreted by the CSS engine in a certain context, just as the myVar token is in the JavaScript example.

So the CSS custom property contains the token 1em without any value, without any type, without any meaning — as yet.

You can use pretty any bunch of characters in a custom property definition. Browsers make no assumptions about their validity or usefulness because they don’t yet know what you want to do with the token. So this, too, is a perfectly fine CSS custom property:

--myEgoTrip: ppk;

Browsers shrug, create the custom property, and store the indicated token. The fact that ppk is invalid in all CSS contexts is irrelevant: we haven’t tried to use it yet.

It’s when you actually use the custom property that values and types are assigned. So let’s use it:

background-color: var(--myEgoTrip);

Now the CSS parser takes the tokens we defined earlier and replaces the custom property with them:

background-color: ppk;

And only NOW the tokens are read and intrepreted. In this case that results in an error: ppk is not a valid value for background-color. So the CSS declaration as a whole is invalid and nothing happens — well, technically it gets the unset value, but the net result is the same. The custom property itself is still perfectly valid, though.

The same happens in our original code example:

div.grandparent { /* font-size could be anything */ --myFontSize: 1em; /* just a token; no value, no meaning */ } div.parent { font-size: 0.4em; } div.child { font-size: var(--myFontSize); /* becomes */ font-size: 1em; /* hey, this is valid CSS! */ /* Right, you obviously want the font size to be the same as the parent's */ /* Sure thing, here you go */ }

In div.child he tokens are read and interpreted by the CSS parser. This results in a declaration font-size: 1em;. This is perfectly valid CSS, and the browsers duly note that the font size of this element should be 1em.

font-size: 1em is relative. To what? Well, to the parent’s font size, of course. Duh. That’s how CSS font-size works.

So now the font size of the child becomes the same as its parent’s, and browsers will proudly display the child element’s text in the same font size as the parent element’s while ignoring the grandparent.

This is not what we wanted to achieve, though. We want the grandparent’s font size. Custom properties — by themselves — don’t do what we want. We have to find another solution.

@property

Lea’s article explains that other solution. We have to use the Houdini @property rule.

@property --myFontSize { syntax: "<length>"; initial-value: 0; inherits: true; } div { border: 1px solid; padding: 1em; } div.grandparent { /* font-size could be anything */ --myFontSize: 1em; } div.parent { font-size: 0.4em; } div.child { font-size: var(--myFontSize); }

Now it works. Wut? Yep — though only in Chrome so far.

@property --myFontSize { syntax: ""; initial-value: 0; inherits: true; } section.example { max-width: 500px; } section.example div { border: 1px solid; padding: 1em; } div.grandparent { font-size: 23px; --myFontSize: 1em; } div.parent { font-size: 0.4em; } div.child { font-size: var(--myFontSize); } This is the grandparent This is the parent This is the child

What black magic is this?

Adding the @property rule changes the custom property --myFontSize from a bunch of tokens without meaning to an actual value. Moreover, this value is calculated in the context it is defined in — the grandfather — so that the 1em value now means 100% of the font size of the grandfather. When we use it in the child it still has this value, and therefore the child gets the same font size as the grandfather, which is exactly what we want to achieve.

(The variable uses a value from the context it’s defined in, and not the context it’s executed in. If, like me, you have a grounding in basic JavaScript you may hear “closures!” in the back of your mind. While they are not the same, and you shouldn’t take this apparent equivalency too far, this notion still helped me understand. Maybe it’ll help you as well.)

Unfortunately I do not quite understand what I’m doing here, though I can assure you the code snippet works in Chrome — and will likely work in the other browsers once they support @property.

Misson completed — just don’t ask me how.

Syntax

You have to get the definition right. You need all three lines in the @property rule. See also the specification and the MDN page.

@property --myFontSize { syntax: "<length>"; initial-value: 0; inherits: true; }

The syntax property tells browsers what kind of property it is and makes parsing it easier. Here is the list of possible values for syntax, and in 99% of the cases one of these values is what you need.

You could also create your own syntax, e.g. syntax: "ppk | <length>"

Now the ppk keyword and any sort of length is allowed as a value.

Note that percentages are not lengths — one of the many things I found out during the writing of this article. Still, they are so common that a special value for “length that may be a percentage or may be calculated using percentages” was created:

syntax: "<length-percentage>"

Finally, one special case you need to know about is this one:

syntax: "*"

MDN calls this a universal selector, but it isn’t, really. Instead, it means “I don’t know what syntax we’re going to use” and it tells browsers not to attempt to interpret the custom property. In our case that would be counterproductive: we definitely want the 1em to be interpreted. So our example doesn’t work with syntax: "*".

initial-value and inherits

An initial-value property is required for any syntax value that is not a *. Here that’s simple: just give it an initial value of 0 — or 16px, or any absolute value. The value doesn’t really matter since we’re going to overrule it anyway. Still, a relative value such as 1em is not allowed: browsers don’t know what the 1em would be relative to and reject it as an initial value.

Finally, inherits: true specifies that the custom property value can be inherited. We definitely want the computed 1em value to be inherited by the child — that’s the entire point of this experiment. So we carefully set this flag to true.

Other use cases

So far this article merely rehashed parts of Lea’s. Since I’m not in the habit of rehashing other people’s articles my original plan was to add at least one other use case. Alas, I failed, though Lea was kind enough to explain why each of my ideas fails.

Percentage of what?

Could we grandfather-inherit percentual margins and paddings? They are relative to the width of the parent of the element you define them on, and I was wondering if it might be useful to send the grandparent’s margin on to the child just like the font size. Something like this:

@property --myMargin { syntax: "<length-percentage>"; initial-value: 0; inherits: true; } div.grandparent { --myMargin: 25%; margin-left: var(--myMargin); } div.parent { font-size: 0.4em; } div.child { margin-left: var(--myMargin); /* should now be 25% of the width of the grandfather's parent */ /* but isn't */ }

Alas, this does not work. Browsers cannot resolve the 25% in the context of the grandparent, as they did with the 1em, because they don’t know what to do.

The most important trick for using percentages in CSS is to always ask yourself: “percentage of WHAT?”

That’s exactly what browsers do when they encounter this @property definition. 25% of what? The parent’s font size? Or the parent’s width? (This is the correct answer, but browsers have no way of knowing that.) Or maybe the width of the element itself, for use in background-position?

Since browsers cannot figure out what the percentage is relative to they do nothing: the custom property gets the initial value of 0 and the grandfather-inheritance fails.

Colours

Another idea I had was using this trick for the grandfather’s text colour. What if we store currentColor, which always has the value of the element’s text colour, and send it on to the grandchild? Something like this:

@property --myColor { syntax: "<color>"; initial-value: black; inherits: true; } div.grandparent { /* color unknown */ --myColor: currentColor; } div.parent { color: red; } div.child { color: var(--myColor); /* should now have the same color as the grandfather */ /* but doesn't */ }

Alas, this does not work either. When the @property blocks are evaluated, and 1em is calculated, currentColor specifically is not touched because it is used as an initial (default) value for some inherited SVG and CSS properties such as fill. Unfortunately I do not fully understand what’s going on, but Tab says this behaviour is necessary, so it is.

Pity, but such is life. Especially when you’re working with new CSS functionalities.

Conclusion

So I tried to find more possbilities for using Lea’s trick, but failed. Relative units are fairly sparse, especially when you leave percentages out of the equation. em and related units such as rem are the only ones, as far as I can see.

So we’re left with a very useful trick for font sizes. You should use it when you need it (bearing in mind that right now it’s only supported in Chromium-based browsers), but extending it to other declarations is not possible at the moment.

Many thanks to Lea Verou and Tab Atkins for reviewing and correcting an earlier draft of this article.

Let&#8217;s talk about money

QuirksBlog - Tue, 06/29/2021 - 1:23am

Let’s talk about money!

Let’s talk about how hard it is to pay small amounts online to people whose work you like and who could really use a bit of income. Let’s talk about how Coil aims to change that.

Taking a subscription to a website is moderately easy, but the person you want to pay must have enabled them. Besides, do you want to purchase a full subscription in order to read one or two articles per month?

Sending a one-time donation is pretty easy as well, but, again, the site owner must have enabled them. And even then it just gives them ad-hoc amounts that they cannot depend on.

Then there’s Patreon and Kickstarter and similar systems, but Patreon is essentially a subscription service while Kickstarter is essentially a one-time donation service, except that both keep part of the money you donate.

And then there’s ads ... Do we want small content creators to remain dependent on ads and thus support the entire ad ecosystem? I, personally, would like to get rid of them.

The problem today is that all non-ad-based systems require you to make conscious decisions to support someone — and even if you’re serious about supporting them you may forget to send in a monthly donation or to renew your subscription. It sort-of works, but the user experience can be improved rather dramatically.

That’s where Coil and the Web Monetization Standard come in.

Web Monetization

The idea behind Coil is that you pay for what you consume easily and automatically. It’s not a subscription - you only pay for what you consume. It’s not a one-time donation, either - you always pay when you consume.

Payments occur automatically when you visit a website that is also subscribed to Coil, and the amount you pay to a single site owner depends on the time you spend on the site. Coil does not retain any of your money, either — everything goes to the people you support.

In this series of four articles we’ll take a closer look at the architecture of the current Coil implementation, how to work with it right now, the proposed standard, and what’s going to happen in the future.

Overview

So how does Coil work right now?

Both the payer and the payee need a Coil account to send and receive money. The payee has to add a <meta> tag with a Coil payment pointer to all pages they want to monetize. The payer has to install the Coil extension in their browsers. You can see this extension as a polyfill. In the future web monetization will, I hope, be supported natively in all browsers.

Once that’s done the process works pretty much automatically. The extension searches for the <meta> tag on any site the user visits. If it finds one it starts a payment stream from payer to payee that continues for as long as the payer stays on the site.

The payee can use the JavaScript API to interact with the monetization stream. For instance, they can show extra content to paying users, or keep track of how much a user paid so far. Unfortunately these functionalities require JavaScript, and the hiding of content is fairly easy to work around. Thus it is not yet suited for serious business purposes, especially in web development circles.

This is one example of how the current system is still a bit rough around the edges. You’ll find more examples in the subsequent articles. Until the time browsers support the standard natively and you can determine your visitors’ monetization status server-side these rough bits will continue to exist. For the moment we will have to work with the system we have.

This article series will discuss all topics we touched on in more detail.

Start now!

For too long we have accepted free content as our birthright, without considering the needs of the people who create it. This becomes even more curious for articles and documentation that are absolutely vital to our work as web developers.

Take a look at this list of currently-monetized web developer sites. Chances are you’ll find a few people whose work you used in the past. Don’t they deserve your direct support?

Free content is not a right, it’s an entitlement. The sooner we internalize this, and start paying independent voices, the better for the web.

The only alternative is that all articles and documentation that we depend on will written by employees of large companies. And employees, no matter how well-meaning, will reflect the priorities and point of view of their employer in the long run.

So start now.

In order to support them you should invest a bit of time once and US$5 per month permanently. I mean, that’s not too much to ask, is it?

Continue

I wrote this article and its sequels for Coil, and yes, I’m getting paid. Still, I believe in what they are doing, so I won’t just spread marketing drivel. Initially it was unclear to me exactly how Coil works. So I did some digging, and the remaining parts of this series give a detailed description of how Coil actually works in practice.

For now the other three articles will only be available on dev.to. I just published part 2, which gives a high-level overview of how Coil works right now. Part 3 will describe the meta tag and the JavaScript API, and in part 4 we’ll take a look at the future, which includes a formal W3C standard. Those parts will be published next week and the week after that.

Wed, 12/31/1969 - 2:00pm
Syndicate content
©2003 - Present Akamai Design & Development.