Tech News

Hot New Fonts: spring 2023

Typography - Thu, 03/23/2023 - 1:30am

Read the book, Typographic Firsts

We’re always excited to tell you about the launch of great new additions to the ILT Font Store. Here are some recent releases we thought you’d like to hear about. And don’t forget they’re all available as webfonts too. Time to meet the new kids on the block:

The post Hot New Fonts: spring 2023 appeared first on I Love Typography.

Tabrizi Jali typeface: reviving history through letterforms

Typography - Sun, 03/19/2023 - 10:50pm

Read the book, Typographic Firsts

Tabrizi Jali is the first type revival based on the early Persian Naskh types of Iranian presses from the nineteenth century. It is a product of several years of extensive research into the history of printing and typefounding, and practical experiments. Thus, it is a great pleasure to announce its release on the first day of spring and the Persian New Year (Nowruz), the 20th of March, 2023. A year that also marks 200 years since the publication of the earliest known Persian book in Tehran.

The post Tabrizi Jali typeface: reviving history through letterforms appeared first on I Love Typography.

ILT’s Favorite Fonts of 2022

Typography - Tue, 03/14/2023 - 12:04am

Read the book, Typographic Firsts

It’s that time of year again. Join us as we look back at some of our favorite fonts published on ILT in 2022.

The post ILT’s Favorite Fonts of 2022 appeared first on I Love Typography.

Making Calendars With Accessibility and Internationalization in Mind

Css Tricks - Mon, 03/13/2023 - 3:23am

Doing a quick search here on CSS-Tricks shows just how many different ways there are to approach calendars. Some show how CSS Grid can create the layout efficiently. Some attempt to bring actual data into the mix. Some rely on a framework to help with state management.

There are many considerations when building a calendar component — far more than what is covered in the articles I linked up. If you think about it, calendars are fraught with nuance, from handling timezones and date formats to localization and even making sure dates flow from one month to the next… and that’s before we even get into accessibility and additional layout considerations depending on where the calendar is displayed and whatnot.

Many developers fear the Date() object and stick with older libraries like moment.js. But while there are many “gotchas” when it comes to dates and formatting, JavaScript has a lot of cool APIs and stuff to help out!

I don’t want to re-create the wheel here, but I will show you how we can get a dang good calendar with vanilla JavaScript. We’ll look into accessibility, using semantic markup and screenreader-friendly <time> -tags — as well as internationalization and formatting, using the Intl.Locale, Intl.DateTimeFormat and Intl.NumberFormat-APIs.

In other words, we’re making a calendar… only without the extra dependencies you might typically see used in a tutorial like this, and with some of the nuances you might not typically see. And, in the process, I hope you’ll gain a new appreciation for newer things that JavaScript can do while getting an idea of the sorts of things that cross my mind when I’m putting something like this together.

First off, naming

What should we call our calendar component? In my native language, it would be called “kalender element”, so let’s use that and shorten that to “Kal-El” — also known as Superman’s name on the planet Krypton.

Let’s create a function to get things going:

function kalEl(settings = {}) { ... }

This method will render a single month. Later we’ll call this method from [...Array(12).keys()] to render an entire year.

Initial data and internationalization

One of the common things a typical online calendar does is highlight the current date. So let’s create a reference for that:

const today = new Date();

Next, we’ll create a “configuration object” that we’ll merge with the optional settings object of the primary method:

const config = Object.assign( { locale: (document.documentElement.getAttribute('lang') || 'en-US'), today: { day: today.getDate(), month: today.getMonth(), year: today.getFullYear() } }, settings );

We check, if the root element (<html>) contains a lang-attribute with locale info; otherwise, we’ll fallback to using en-US. This is the first step toward internationalizing the calendar.

We also need to determine which month to initially display when the calendar is rendered. That’s why we extended the config object with the primary date. This way, if no date is provided in the settings object, we’ll use the today reference instead:

const date = ? new Date( : today;

We need a little more info to properly format the calendar based on locale. For example, we might not know whether the first day of the week is Sunday or Monday, depending on the locale. If we have the info, great! But if not, we’ll update it using the Intl.Locale API. The API has a weekInfo object that returns a firstDay property that gives us exactly what we’re looking for without any hassle. We can also get which days of the week are assigned to the weekend:

if (! = new Intl.Locale(config.locale).weekInfo || { firstDay: 7, weekend: [6, 7] };

Again, we create fallbacks. The “first day” of the week for en-US is Sunday, so it defaults to a value of 7. This is a little confusing, as the getDay method in JavaScript returns the days as [0-6], where 0 is Sunday… don’t ask me why. The weekends are Saturday and Sunday, hence [6, 7].

Before we had the Intl.Locale API and its weekInfo method, it was pretty hard to create an international calendar without many **objects and arrays with information about each locale or region. Nowadays, it’s easy-peasy. If we pass in en-GB, the method returns:

// en-GB { firstDay: 1, weekend: [6, 7], minimalDays: 4 }

In a country like Brunei (ms-BN), the weekend is Friday and Sunday:

// ms-BN { firstDay: 7, weekend: [5, 7], minimalDays: 1 }

You might wonder what that minimalDays property is. That’s the fewest days required in the first week of a month to be counted as a full week. In some regions, it might be just one day. For others, it might be a full seven days.

Next, we’ll create a render method within our kalEl-method:

const render = (date, locale) => { ... }

We still need some more data to work with before we render anything:

const month = date.getMonth(); const year = date.getFullYear(); const numOfDays = new Date(year, month + 1, 0).getDate(); const renderToday = (year === && (month ===;

The last one is a Boolean that checks whether today exists in the month we’re about to render.

Semantic markup

We’re going to get deeper in rendering in just a moment. But first, I want to make sure that the details we set up have semantic HTML tags associated with them. Setting that up right out of the box gives us accessibility benefits from the start.

Calendar wrapper

First, we have the non-semantic wrapper: <kal-el>. That’s fine because there isn’t a semantic <calendar> tag or anything like that. If we weren’t making a custom element, <article> might be the most appropriate element since the calendar could stand on its own page.

Month names

The <time> element is going to be a big one for us because it helps translate dates into a format that screenreaders and search engines can parse more accurately and consistently. For example, here’s how we can convey “January 2023” in our markup:

<time datetime="2023-01">January <i>2023</i></time> Day names

The row above the calendar’s dates containing the names of the days of the week can be tricky. It’s ideal if we can write out the full names for each day — e.g. Sunday, Monday, Tuesday, etc. — but that can take up a lot of space. So, let’s abbreviate the names for now inside of an <ol> where each day is a <li>:

<ol> <li><abbr title="Sunday">Sun</abbr></li> <li><abbr title="Monday">Mon</abbr></li> <!-- etc. --> </ol>

We could get tricky with CSS to get the best of both worlds. For example, if we modified the markup a bit like this:

<ol> <li> <abbr title="S">Sunday</abbr> </li> </ol>

…we get the full names by default. We can then “hide” the full name when space runs out and display the title attribute instead:

@media all and (max-width: 800px) { li abbr::after { content: attr(title); } }

But, we’re not going that way because the Intl.DateTimeFormat API can help here as well. We’ll get to that in the next section when we cover rendering.

Day numbers

Each date in the calendar grid gets a number. Each number is a list item (<li>) in an ordered list (<ol>), and the inline <time> tag wraps the actual number.

<li> <time datetime="2023-01-01">1</time> </li>

And while I’m not planning to do any styling just yet, I know I will want some way to style the date numbers. That’s possible as-is, but I also want to be able to style weekday numbers differently than weekend numbers if I need to. So, I’m going to include data-* attributes specifically for that: data-weekend and data-today.

Week numbers

There are 52 weeks in a year, sometimes 53. While it’s not super common, it can be nice to display the number for a given week in the calendar for additional context. I like having it now, even if I don’t wind up not using it. But we’ll totally use it in this tutorial.

We’ll use a data-weeknumber attribute as a styling hook and include it in the markup for each date that is the week’s first date.

<li data-day="7" data-weeknumber="1" data-weekend=""> <time datetime="2023-01-08">8</time> </li> Rendering

Let’s get the calendar on a page! We already know that <kal-el> is the name of our custom element. First thing we need to configure it is to set the firstDay property on it, so the calendar knows whether Sunday or some other day is the first day of the week.

<kal-el data-firstday="${ }">

We’ll be using template literals to render the markup. To format the dates for an international audience, we’ll use the Intl.DateTimeFormat API, again using the locale we specified earlier.

The month and year

When we call the month, we can set whether we want to use the long name (e.g. February) or the short name (e.g. Feb.). Let’s use the long name since it’s the title above the calendar:

<time datetime="${year}-${(pad(month))}"> ${new Intl.DateTimeFormat( locale, { month:'long'}).format(date)} <i>${year}</i> </time> Weekday names

For weekdays displayed above the grid of dates, we need both the long (e.g. “Sunday”) and short (abbreviated, ie. “Sun”) names. This way, we can use the “short” name when the calendar is short on space:

Intl.DateTimeFormat([locale], { weekday: 'long' }) Intl.DateTimeFormat([locale], { weekday: 'short' })

Let’s make a small helper method that makes it a little easier to call each one:

const weekdays = (firstDay, locale) => { const date = new Date(0); const arr = [...Array(7).keys()].map(i => { date.setDate(5 + i) return { long: new Intl.DateTimeFormat([locale], { weekday: 'long'}).format(date), short: new Intl.DateTimeFormat([locale], { weekday: 'short'}).format(date) } }) for (let i = 0; i < 8 - firstDay; i++) arr.splice(0, 0, arr.pop()); return arr; }

Here’s how we invoke that in the template:

<ol> ${weekdays(,locale).map(name => ` <li> <abbr title="${name.long}">${name.short}</abbr> </li>`).join('') } </ol> Day numbers

And finally, the days, wrapped in an <ol> element:

${[...Array(numOfDays).keys()].map(i => { const cur = new Date(year, month, i + 1); let day = cur.getDay(); if (day === 0) day = 7; const today = renderToday && ( === i + 1) ? ' data-today':''; return ` <li data-day="${day}"${today}${i === 0 || day === ? ` data-weeknumber="${new Intl.NumberFormat(locale).format(getWeek(cur))}"`:''}${ ? ` data-weekend`:''}> <time datetime="${year}-${(pad(month))}-${pad(i)}" tabindex="0"> ${new Intl.NumberFormat(locale).format(i + 1)} </time> </li>` }).join('')}

Let’s break that down:

  1. We create a “dummy” array, based on the “number of days” variable, which we’ll use to iterate.
  2. We create a day variable for the current day in the iteration.
  3. We fix the discrepancy between the Intl.Locale API and getDay().
  4. If the day is equal to today, we add a data-* attribute.
  5. Finally, we return the <li> element as a string with merged data.
  6. tabindex="0" makes the element focusable, when using keyboard navigation, after any positive tabindex values (Note: you should never add positive tabindex-values)

To “pad” the numbers in the datetime attribute, we use a little helper method:

const pad = (val) => (val + 1).toString().padStart(2, '0'); Week number

Again, the “week number” is where a week falls in a 52-week calendar. We use a little helper method for that as well:

function getWeek(cur) { const date = new Date(cur.getTime()); date.setHours(0, 0, 0, 0); date.setDate(date.getDate() + 3 - (date.getDay() + 6) % 7); const week = new Date(date.getFullYear(), 0, 4); return 1 + Math.round(((date.getTime() - week.getTime()) / 86400000 - 3 + (week.getDay() + 6) % 7) / 7); }

I didn’t write this getWeek-method. It’s a cleaned up version of this script.

And that’s it! Thanks to the Intl.Locale, Intl.DateTimeFormat and Intl.NumberFormat APIs, we can now simply change the lang-attribute of the <html> element to change the context of the calendar based on the current region:

de-DE fa-IR zh-Hans-CN-u-nu-hanidec Styling the calendar

You might recall how all the days are just one <ol> with list items. To style these into a readable calendar, we dive into the wonderful world of CSS Grid. In fact, we can repurpose the same grid from a starter calendar template right here on CSS-Tricks, but updated a smidge with the :is() relational pseudo to optimize the code.

Notice that I’m defining configurable CSS variables along the way (and prefixing them with ---kalel- to avoid conflicts).

kal-el :is(ol, ul) { display: grid; font-size: var(--kalel-fz, small); grid-row-gap: var(--kalel-row-gap, .33em); grid-template-columns: var(--kalel-gtc, repeat(7, 1fr)); list-style: none; margin: unset; padding: unset; position: relative; }

Let’s draw borders around the date numbers to help separate them visually:

kal-el :is(ol, ul) li { border-color: var(--kalel-li-bdc, hsl(0, 0%, 80%)); border-style: var(--kalel-li-bds, solid); border-width: var(--kalel-li-bdw, 0 0 1px 0); grid-column: var(--kalel-li-gc, initial); text-align: var(--kalel-li-tal, end); }

The seven-column grid works fine when the first day of the month is also the first day of the week for the selected locale). But that’s the exception rather than the rule. Most times, we’ll need to shift the first day of the month to a different weekday.

Remember all the extra data-* attributes we defined when writing our markup? We can hook into those to update which grid column (--kalel-li-gc) the first date number of the month is placed on:

[data-firstday="1"] [data-day="3"]:first-child { --kalel-li-gc: 1 / 4; }

In this case, we’re spanning from the first grid column to the fourth grid column — which will automatically “push” the next item (Day 2) to the fifth grid column, and so forth.

Let’s add a little style to the “current” date, so it stands out. These are just my styles. You can totally do what you’d like here.

[data-today] { --kalel-day-bdrs: 50%; --kalel-day-bg: hsl(0, 86%, 40%); --kalel-day-hover-bgc: hsl(0, 86%, 70%); --kalel-day-c: #fff; }

I like the idea of styling the date numbers for weekends differently than weekdays. I’m going to use a reddish color to style those. Note that we can reach for the :not() pseudo-class to select them while leaving the current date alone:

[data-weekend]:not([data-today]) { --kalel-day-c: var(--kalel-weekend-c, hsl(0, 86%, 46%)); }

Oh, and let’s not forget the week numbers that go before the first date number of each week. We used a data-weeknumber attribute in the markup for that, but the numbers won’t actually display unless we reveal them with CSS, which we can do on the ::before pseudo-element:

[data-weeknumber]::before { display: var(--kalel-weeknumber-d, inline-block); content: attr(data-weeknumber); position: absolute; inset-inline-start: 0; /* additional styles */ }

We’re technically done at this point! We can render a calendar grid that shows the dates for the current month, complete with considerations for localizing the data by locale, and ensuring that the calendar uses proper semantics. And all we used was vanilla JavaScript and CSS!

But let’s take this one more step

Rendering an entire year

Maybe you need to display a full year of dates! So, rather than render the current month, you might want to display all of the month grids for the current year.

Well, the nice thing about the approach we’re using is that we can call the render method as many times as we want and merely change the integer that identifies the month on each instance. Let’s call it 12 times based on the current year.

as simple as calling the render-method 12 times, and just change the integer for month — i:

[...Array(12).keys()].map(i => render( new Date(date.getFullYear(), i, date.getDate()), config.locale, date.getMonth() ) ).join('')

It’s probably a good idea to create a new parent wrapper for the rendered year. Each calendar grid is a <kal-el> element. Let’s call the new parent wrapper <jor-el>, where Jor-El is the name of Kal-El’s father.

<jor-el id="app" data-year="true"> <kal-el data-firstday="7"> <!-- etc. --> </kal-el> <!-- other months --> </jor-el>

We can use <jor-el> to create a grid for our grids. So meta!

jor-el { background: var(--jorel-bg, none); display: var(--jorel-d, grid); gap: var(--jorel-gap, 2.5rem); grid-template-columns: var(--jorel-gtc, repeat(auto-fill, minmax(320px, 1fr))); padding: var(--jorel-p, 0); } Final demo CodePen Embed Fallback Bonus: Confetti Calendar

I read an excellent book called Making and Breaking the Grid the other day and stumbled on this beautiful “New Year’s poster”:

Source: Making and Breaking the Grid (2nd Edition) by Timothy Samara

I figured we could do something similar without changing anything in the HTML or JavaScript. I’ve taken the liberty to include full names for months, and numbers instead of day names, to make it more readable. Enjoy!

CodePen Embed Fallback

Making Calendars With Accessibility and Internationalization in Mind originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

5 Mistakes I Made When Starting My First React Project

Css Tricks - Fri, 03/10/2023 - 6:41am

You know what it’s like to pick up a new language or framework. Sometimes there’s great documentation to help you find your way through it. But even the best documentation doesn’t cover absolutely everything. And when you work with something that’s new, you’re bound to find a problem that doesn’t have a written solution.

That’s how it was for me the first time I created a React project — and React is one of those frameworks with remarkable documentation, especially now with the beta docs. But I still struggled my way through. It’s been quite a while since that project, but the lessons I gained from it are still fresh in my mind. And even though there are a lot of React “how-to” tutorials in out there, I thought I’d share what I wish I knew when I first used it.

So, that’s what this article is — a list of the early mistakes I made. I hope they help make learning React a lot smoother for you.

Using create-react-app to start a project

TL;DR Use Vite or Parcel.

Create React App (CRA) is a tool that helps you set up a new React project. It creates a development environment with the best configuration options for most React projects. This means you don’t have to spend time configuring anything yourself.

As a beginner, this seemed like a great way to start my work! No configuration! Just start coding!

CRA uses two popular packages to achieve this, webpack and Babel. webpack is a web bundler that optimizes all of the assets in your project, such as JavaScript, CSS, and images. Babel is a tool that allows you to use newer JavaScript features, even if some browsers don’t support them.

Both are good, but there are newer tools that can do the job better, specifically Vite and Speedy Web Compiler (SWC).

These new and improved alternatives are faster and easier to configure than webpack and Babel. This makes it easier to adjust the configuration which is difficult to do in create-react-app without ejecting.

To use them both when setting up a new React project you have to make sure you have Node version 12 or higher installed, then run the following command.

npm create vite

You’ll be asked to pick a name for your project. Once you do that, select React from the list of frameworks. After that, you can select either Javascript + SWC or Typescript + SWC

Then you’ll have to change directory cd into your project and run the following command;

npm i && npm run dev

This should run a development server for your site with the URL localhost:5173

And it’s as simple as that.

Article on Jan 11, 2022 Adding Vite to Your Existing Web App Adam Rackis Article on Jan 18, 2022 Making a Site Work Offline Using the VitePWA Plugin Adam Rackis Article on Jan 12, 2022 Parcel CSS: A New CSS Parser, Transformer, and Minifier Chris Coyier Article on Apr 25, 2019 Using Parcel as a Bundler for React Applications Kingsley Silas Using defaultProps for default values

TL;DR Use default function parameters instead.

Data can be passed to React components through something called props. These are added to a component just like attributes in an HTML element and can be used in a component’s definition by taking the relevant values from the prop object passed in as an argument.

// App.jsx export default function App() { return <Card title="Hello" description="world" /> } // Card.jsx function Card(props) { return ( <div> <h1>{props.title}</h1> <p>{props.description}</p> </div> ); } export default Card;

If a default value is ever required for a prop, the defaultProp property can be used:

// Card.jsx function Card(props) { // ... } Card.defaultProps = { title: 'Default title', description: 'Desc', }; export default Card;

With modern JavaScript, it is possible to destructure the props object and assign a default value to it all in the function argument.

// Card.jsx function Card({title = "Default title", description= "Desc"}) { return ( <div> <h1>{title}</h1> <p>{description}</p> </div> ) } export default Card;

This is more favorable as the code that can be read by modern browsers without the need for extra transformation.

Unfortunately, defaultProps do require some transformation to be read by the browser since JSX (JavaScript XML) isn’t supported out of the box. This could potentially affect the performance of an application that is using a lot of defaultProps.

Article on Oct 23, 2019 Demonstrating Reusable React Components in a Form Kingsley Silas Article on Jun 7, 2017 I Learned How to be Productive in React in a Week and You Can, Too Sarah Drasner Article on Aug 31, 2018 Props and PropTypes in React Kingsley Silas Don’t use propTypes

TL;DR Use TypeScript.

In React, the propTypes property can be used to check if a component is being passed the correct data type for its props. They allow you to specify the type of data that should be used for each prop such as a string, number, object, etc. They also allow you to specify if a prop is required or not.

This way, if a component is passed the wrong data type or if a required prop is not being provided, then React will throw an error.

// Card.jsx import { PropTypes } from "prop-types"; function Card(props) { // ... } Card.propTypes = { title: PropTypes.string.isRequired, description: PropTypes.string, }; export default Card;

TypeScript provides a level of type safety in data that’s being passed to components. So, sure, propTypes were a good idea back when I was starting. However, now that TypeScript has become the go-to solution for type safety, I would highly recommend using it over anything else.

// Card.tsx interface CardProps { title: string, description?: string, } export default function Card(props: CardProps) { // ... }

TypeScript is a programming language that builds on top of JavaScript by adding static type-checking. TypeScript provides a more powerful type system, that can catch more potential bugs and improves the development experience.

Article on Aug 31, 2018 Props and PropTypes in React Kingsley Silas Article on Mar 27, 2018 Putting Things in Context With React Neal Fennimore Article on Nov 16, 2018 An Overview of Render Props in React Kingsley Silas Using class components

TL;DR: Write components as functions

Class components in React are created using JavaScript classes. They have a more object-oriented structure and as well as a few additional features, like the ability to use the this keyword and lifecycle methods.

// Card.jsx class Card extends React.Component { render() { return ( <div> <h1>{this.props.title}</h1> <p>{this.props.description}</p> </div> ) } } export default Card;

I prefer writing components with classes over functions, but JavaScript classes are more difficult for beginners to understand and this can get very confusing. Instead, I’d recommend writing components as functions:

// Card.jsx function Card(props) { return ( <div> <h1>{props.title}</h1> <p>{props.description}</p> </div> ) } export default Card;

Function components are simply JavaScript functions that return JSX. They are much easier to read, and do not have additional features like the this keyword and lifecycle methods which make them more performant than class components.

Function components also have the advantage of using hooks. React Hooks allow you to use state and other React features without writing a class component, making your code more readable, maintainable and reusable.

Article on Jul 6, 2019 Getting to Know the useReducer React Hook Kingsley Silas Article on May 1, 2020 Intro to React Hooks Kingsley Silas Article on Jul 15, 2022 React Hooks: The Deep Cuts Blessing Ene Anyebe Importing React unnecessarily

TL;DR: There’s no need to do it, unless you need hooks.

Since React 17 was released in 2020, it’s now unnecessary to import React at the top of your file whenever you create a component.

import React from 'react'; // Not needed! export default function Card() {}

But we had to do that before React 17 because the JSX transformer (the thing that converts JSX into regular JavaScript) used a method called React.createElement that would only work when importing React. Since then, a new transformer has been release which can transform JSX without the createElement method.

You will still need to import React to use hooks, fragments, and any other functions or components you might need from the library:

import { useState } from 'react'; export default function Card() { const [count, setCount] = useState(0); // ... } Those were my early mistakes!

Maybe “mistake” is too harsh a word since some of the better practices came about later. Still, I see plenty of instances where the “old” way of doing something is still being actively used in projects and other tutorials.

To be honest, I probably made way more than five mistakes when getting started. Anytime you reach for a new tool it is going to be more like a learning journey to use it effectively, rather than flipping a switch. But these are the things I still carry with me years later!

If you’ve been using React for a while, what are some of the things you wish you knew before you started? It would be great to get a collection going to help others avoid the same struggles.

5 Mistakes I Made When Starting My First React Project originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Power up your design game!

Typography - Fri, 03/10/2023 - 1:45am

Read the book, Typographic Firsts

We’re thrilled to announce new ILT Academy courses and workshops. Take your Glyphs skills to the next level with our Glyphs Power-Up workshop, learn to design a Cyrillic typeface from scratch, or start designing variable fonts.

The post Power up your design game! appeared first on I Love Typography.

Creating a Clock with the New CSS sin() and cos() Trigonometry Functions

Css Tricks - Wed, 03/08/2023 - 4:05am

CSS trigonometry functions are here! Well, they are if you’re using the latest versions of Firefox and Safari, that is. Having this sort of mathematical power in CSS opens up a whole bunch of possibilities. In this tutorial, I thought we’d dip our toes in the water to get a feel for a couple of the newer functions: sin() and cos().

There are other trigonometry functions in the pipeline — including tan() — so why focus just on sin() and cos()? They happen to be perfect for the idea I have in mind, which is to place text along the edge of a circle. That’s been covered here on CSS-Tricks when Chris shared an approach that uses a Sass mixin. That was six years ago, so let’s give it the bleeding edge treatment.

Here’s what I have in mind. Again, it’s only supported in Firefox and Safari at the moment:

CodePen Embed Fallback

So, it’s not exactly like words forming a circular shape, but we are placing text characters along the circle to form a clock face. Here’s some markup we can use to kick things off:

<div class="clock"> <div class="clock-face"> <time datetime="12:00">12</time> <time datetime="1:00">1</time> <time datetime="2:00">2</time> <time datetime="3:00">3</time> <time datetime="4:00">4</time> <time datetime="5:00">5</time> <time datetime="6:00">6</time> <time datetime="7:00">7</time> <time datetime="8:00">8</time> <time datetime="9:00">9</time> <time datetime="10:00">10</time> <time datetime="11:00">11</time> </div> </div>

Next, here are some super basic styles for the .clock-face container. I decided to use the <time> tag with a datetime attribute. 

.clock { --_ow: clamp(5rem, 60vw, 40rem); --_w: 88cqi; aspect-ratio: 1; background-color: tomato; border-radius: 50%; container-type: inline; display: grid; height: var(--_ow); place-content: center; position: relative; width var(--_ow); }

I decorated things a bit in there, but only to get the basic shape and background color to help us see what we’re doing. Notice how we save the width value in a CSS variable. We’ll use that later. Not much to look at so far:

It looks like some sort of modern art experiment, right? Let’s introduce a new variable, --_r, to store the circle’s radius, which is equal to half of the circle’s width. This way, if the width (--_w) changes, the radius value (--_r) will also update — thanks to another CSS math function, calc():

.clock { --_w: 300px; --_r: calc(var(--_w) / 2); /* rest of styles */ }

Now, a bit of math. A circle is 360 degrees. We have 12 labels on our clock, so want to place the numbers every 30 degrees (360 / 12). In math-land, a circle begins at 3 o’clock, so noon is actually minus 90 degrees from that, which is 270 degrees (360 - 90).

Let’s add another variable, --_d, that we can use to set a degree value for each number on the clock face. We’re going to increment the values by 30 degrees to complete our circle:

.clock time:nth-child(1) { --_d: 270deg; } .clock time:nth-child(2) { --_d: 300deg; } .clock time:nth-child(3) { --_d: 330deg; } .clock time:nth-child(4) { --_d: 0deg; } .clock time:nth-child(5) { --_d: 30deg; } .clock time:nth-child(6) { --_d: 60deg; } .clock time:nth-child(7) { --_d: 90deg; } .clock time:nth-child(8) { --_d: 120deg; } .clock time:nth-child(9) { --_d: 150deg; } .clock time:nth-child(10) { --_d: 180deg; } .clock time:nth-child(11) { --_d: 210deg; } .clock time:nth-child(12) { --_d: 240deg; }

OK, now’s the time to get our hands dirty with the sin() and cos() functions! What we want to do is use them to get the X and Y coordinates for each number so we can place them properly around the clock face.

The formula for the X coordinate is radius + (radius * cos(degree)). Let’s plug that into our new --_x variable:

--_x: calc(var(--_r) + (var(--_r) * cos(var(--_d))));

The formula for the Y coordinate is radius + (radius * sin(degree)). We have what we need to calculate that:

--_y: calc(var(--_r) + (var(--_r) * sin(var(--_d))));

There are a few housekeeping things we need to do to set up the numbers, so let’s put some basic styling on them to make sure they are absolutely positioned and placed with our coordinates:

.clock-face time { --_x: calc(var(--_r) + (var(--_r) * cos(var(--_d)))); --_y: calc(var(--_r) + (var(--_r) * sin(var(--_d)))); --_sz: 12cqi; display: grid; height: var(--_sz); left: var(--_x); place-content: center; position: absolute; top: var(--_y); width: var(--_sz); }

Notice --_sz, which we’ll use for the width and height of the numbers in a moment. Let’s see what we have so far.

This definitely looks more like a clock! See how the top-left corner of each number is positioned at the correct place around the circle? We need to “shrink” the radius when calculating the positions for each number. We can deduct the size of a number (--_sz) from the size of the circle (--_w), before we calculate the radius:

--_r: calc((var(--_w) - var(--_sz)) / 2);

Much better! Let’s change the colors, so it looks more elegant:

We could stop right here! We accomplished the goal of placing text around a circle, right? But what’s a clock without arms to show hours, minutes, and seconds?

Let’s use a single CSS animation for that. First, let’s add three more elements to our markup,

<div class="clock"> <!-- after <time>-tags --> <span class="arm seconds"></span> <span class="arm minutes"></span> <span class="arm hours"></span> <span class="arm center"></span> </div>

Then some common markup for all three arms. Again, most of this is just make sure the arms are absolutely positioned and placed accordingly:

.arm { background-color: var(--_abg); border-radius: calc(var(--_aw) * 2); display: block; height: var(--_ah); left: calc((var(--_w) - var(--_aw)) / 2); position: absolute; top: calc((var(--_w) / 2) - var(--_ah)); transform: rotate(0deg); transform-origin: bottom; width: var(--_aw); }

We’ll use the same animation for all three arms:

@keyframes turn { to { transform: rotate(1turn); } }

The only difference is the time the individual arms take to make a full turn. For the hours arm, it takes 12 hours to make a full turn. The animation-duration property only accepts values in milliseconds and seconds. Let’s stick with seconds, which is 43,200 seconds (60 seconds * 60 minutes * 12 hours).

animation: turn 43200s infinite;

It takes 1 hour for the minutes arm to make a full turn. But we want this to be a multi-step animation so the movement between the arms is staggered rather than linear. We’ll need 60 steps, one for each minute:

animation: turn 3600s steps(60, end) infinite;

The seconds arm is almost the same as the minutes arm, but the duration is 60 seconds instead of 60 minutes:

animation: turn 60s steps(60, end) infinite;

Let’s update the properties we created in the common styles:

.seconds { --_abg: hsl(0, 5%, 40%); --_ah: 145px; --_aw: 2px; animation: turn 60s steps(60, end) infinite; } .minutes { --_abg: #333; --_ah: 145px; --_aw: 6px; animation: turn 3600s steps(60, end) infinite; } .hours { --_abg: #333; --_ah: 110px; --_aw: 6px; animation: turn 43200s linear infinite; }

What if we want to start at the current time? We need a little bit of JavaScript:

const time = new Date(); const hour = -3600 * (time.getHours() % 12); const mins = -60 * time.getMinutes();'--_dm', `${mins}s`);'--_dh', `${(hour+mins)}s`);

I’ve added id="app" to the clockface and set two new custom properties on it that set a negative animation-delay, as Mate Marschalko did when he shared a CSS-only clock. The getHours() method of JavaScipt’s Date object is using the 24-hour format, so we use the remainder operator to convert it into 12-hour format.

In the CSS, we need to add the animation-delay as well:

.minutes { animation-delay: var(--_dm, 0s); /* other styles */ } .hours { animation-delay: var(--_dh, 0s); /* other styles */ }

Just one more thing. Using CSS @supports and the properties we’ve already created, we can provide a fallback to browsers that do not supprt sin() and cos(). (Thank you, Temani Afif!):

@supports not (left: calc(1px * cos(45deg))) {   time {     left: 50% !important;     top: 50% !important;     transform: translate(-50%,-50%) rotate(var(--_d)) translate(var(--_r)) rotate(calc(-1*var(--_d)))   } }

And, voilà! Our clock is done! Here’s the final demo one more time. Again, it’s only supported in Firefox and Safari at the moment.

CodePen Embed Fallback What else can we do?

Just messing around here, but we can quickly turn our clock into a circular image gallery by replacing the <time> tags with <img> then updating the width (--_w) and radius (--_r) values:

CodePen Embed Fallback

Let’s try one more. I mentioned earlier how the clock looked kind of like a modern art experiment. We can lean into that and re-create a pattern I saw on a poster (that I unfortunately didn’t buy) in an art gallery the other day. As I recall, it was called “Moon” and consisted of a bunch of dots forming a circle.

We’ll use an unordered list this time since the circles don’t follow a particular order. We’re not even going to put all the list items in the markup. Instead, let’s inject them with JavaScript and add a few controls we can use to manipulate the final result.

The controls are range inputs (<input type="range">) which we’ll wrap in a <form> and listen for the input event.

<form id="controls"> <fieldset> <label>Number of rings <input type="range" min="2" max="12" value="10" id="rings" /> </label> <label>Dots per ring <input type="range" min="5" max="12" value="7" id="dots" /> </label> <label>Spread <input type="range" min="10" max="40" value="40" id="spread" /> </label> </fieldset> </form>

We’ll run this method on “input”, which will create a bunch of <li> elements with the degree (--_d) variable we used earlier applied to each one. We can also repurpose our radius variable (--_r) .

I also want the dots to be different colors. So, let’s randomize (well, not completely randomized) the HSL color value for each list item and store it as a new CSS variable, --_bgc:

const update = () => { let s = ""; for (let i = 1; i <= rings.valueAsNumber; i++) { const r = spread.valueAsNumber * i; const theta = coords(dots.valueAsNumber * i); for (let j = 0; j < theta.length; j++) { s += `<li style="--_d:${theta[j]};--_r:${r}px;--_bgc:hsl(${random( 50, 25 )},${random(90, 50)}%,${random(90, 60)}%)"></li>`; } } app.innerHTML = s; }

The random() method picks a value within a defined range of numbers:

const random = (max, min = 0, f = true) => f ? Math.floor(Math.random() * (max - min) + min) : Math.random() * max;

And that’s it. We use JavaScript to render the markup, but as soon as it’s rendered, we don’t really need it. The sin() and cos() functions help us position all the dots in the right spots.

CodePen Embed Fallback Final thoughts

Placing things around a circle is a pretty basic example to demonstrate the powers of trigonometry functions like sin() and cos(). But it’s really cool that we are getting modern CSS features that provide new solutions for old workarounds I’m sure we’ll see way more interesting, complex, and creative use cases, especially as browser support comes to Chrome and Edge.

Creating a Clock with the New CSS sin() and cos() Trigonometry Functions originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Steven Heller’s Font of the Month: Juma

Typography - Sun, 03/05/2023 - 5:00pm

Read the book, Typographic Firsts

Steven Heller takes a closer look at Cyla Costa’s bold brilliant and wonderful new color font family, Juma.

The post Steven Heller’s Font of the Month: Juma appeared first on I Love Typography.

Hot New Fonts: Rotulo

Typography - Fri, 03/03/2023 - 7:04am

Read the book, Typographic Firsts

A quick heads up about a great new release from Huy!Fonts. Rotulo is a huge new sans serif family that comes in 90, yes ninety styles. If you prefer varaible fonts, then this is your lucky day because Rotulo also comes in a single variable font with all three axes — width, weight, and slant — baked in.

The post Hot New Fonts: Rotulo appeared first on I Love Typography.

Expressive script fonts

Typography - Mon, 02/27/2023 - 6:20pm

Read the book, Typographic Firsts

Expressive script fonts are a great way to introduce some energy into your designs. They can be use in standalone words as logos, for packaging, and in editorial design. They're also a great way to change pace as part of a system of typographic hierarchy, as headers or subheads. Here are 3 of our favorite expressive script fonts to get you started.

The post Expressive script fonts appeared first on I Love Typography.

Three Free Fonts

Typography - Thu, 02/23/2023 - 11:36pm

Read the book, Typographic Firsts

A brief post today to introduce you to three quality free fonts. There are plenty of poor quality free fonts out there. Some are missing important characters, others are just poorly drawn, or are bastardized versions of popular font families. But some $0 fonts are great quality and make welcome additions to anyone’s font library. […]

The post Three Free Fonts appeared first on I Love Typography.

Fonts for Editorial Design

Typography - Tue, 02/21/2023 - 8:08pm

Read the book, Typographic Firsts

Typefaces for editorial design need to be expansive enough to support complex typographic hierarchies. They need to be readable (people read magazines & blogs) — but they also need to fulfill roles as titles, captions, pull quotes, drop caps, etc.

The post Fonts for Editorial Design appeared first on I Love Typography.

Stellar Serifs: Sisteron

Typography - Sun, 02/19/2023 - 7:42pm

Read the book, Typographic Firsts

Sisteron, from the brilliant folk at Beasts of England Foundry, achieves a delicate and beautiful balance between stellar and stupendous. From vintage outer-space to Art Nouveau and Jugendstil, Sisteron is a typeface that evokes the ’20s, ’70s, and the 21st century.

The post Stellar Serifs: Sisteron appeared first on I Love Typography.

Different Ways to Get CSS Gradient Shadows

Css Tricks - Fri, 02/10/2023 - 5:13am

It’s a question I hear asked quite often: Is it possible to create shadows from gradients instead of solid colors? There is no specific CSS property that does this (believe me, I’ve looked) and any blog post you find about it is basically a lot of CSS tricks to approximate a gradient. We’ll actually cover some of those as we go.

But first… another article about gradient shadows? Really?

Yes, this is yet another post on the topic, but it is different. Together, we’re going to push the limits to get a solution that covers something I haven’t seen anywhere else: transparency. Most of the tricks work if the element has a non-transparent background but what if we have a transparent background? We will explore this case here!

Before we start, let me introduce my gradient shadows generator. All you have to do is to adjust the configuration, and get the code. But follow along because I’m going to help you understand all the logic behind the generated code.

Table of Contents Non-transparent solution

Let’s start with the solution that’ll work for 80% of most cases. The most typical case: you are using an element with a background, and you need to add a gradient shadow to it. No transparency issues to consider there.

The solution is to rely on a pseudo-element where the gradient is defined. You place it behind the actual element and apply a blur filter to it.

.box { position: relative; } .box::before { content: ""; position: absolute; inset: -5px; /* control the spread */ transform: translate(10px, 8px); /* control the offsets */ z-index: -1; /* place the element behind */ background: /* your gradient here */; filter: blur(10px); /* control the blur */ }

It looks like a lot of code, and that’s because it is. Here’s how we could have done it with a box-shadow instead if we were using a solid color instead of a gradient.

box-shadow: 10px 8px 10px 5px orange;

That should give you a good idea of what the values in the first snippet are doing. We have X and Y offsets, the blur radius, and the spread distance. Note that we need a negative value for the spread distance that comes from the inset property.

Here’s a demo showing the gradient shadow next to a classic box-shadow:

CodePen Embed Fallback

If you look closely you will notice that both shadows are a little different, especially the blur part. It’s not a surprise because I am pretty sure the filter property’s algorithm works differently than the one for box-shadow. That’s not a big deal since the result is, in the end, quite similar.

This solution is good, but still has a few drawbacks related to the z-index: -1 declaration. Yes, there is “stacking context” happening there!

CodePen Embed Fallback

I applied a transform to the main element, and boom! The shadow is no longer below the element. This is not a bug but the logical result of a stacking context. Don’t worry, I will not start a boring explanation about stacking context (I already did that in a Stack Overflow thread), but I’ll still show you how to work around it.

The first solution that I recommend is to use a 3D transform:

.box { position: relative; transform-style: preserve-3d; } .box::before { content: ""; position: absolute; inset: -5px; transform: translate3d(10px, 8px, -1px); /* (X, Y, Z) */ background: /* .. */; filter: blur(10px); }

Instead of using z-index: -1, we will use a negative translation along the Z-axis. We will put everything inside translate3d(). Don’t forget to use transform-style: preserve-3d on the main element; otherwise, the 3D transform won’t take effect.

CodePen Embed Fallback

As far as I know, there is no side effect to this solution… but maybe you see one. If that’s the case, share it in the comment section, and let’s try to find a fix for it!

If for some reason you are unable to use a 3D transform, the other solution is to rely on two pseudo-elements — ::before and ::after. One creates the gradient shadow, and the other reproduces the main background (and other styles you might need). That way, we can easily control the stacking order of both pseudo-elements.

.box { position: relative; z-index: 0; /* We force a stacking context */ } /* Creates the shadow */ .box::before { content: ""; position: absolute; z-index: -2; inset: -5px; transform: translate(10px, 8px); background: /* .. */; filter: blur(10px); } /* Reproduces the main element styles */ .box::after { content: """; position: absolute; z-index: -1; inset: 0; /* Inherit all the decorations defined on the main element */ background: inherit; border: inherit; box-shadow: inherit; } CodePen Embed Fallback

It’s important to note that we are forcing the main element to create a stacking context by declaring z-index: 0, or any other property that do the same, on it. Also, don’t forget that pseudo-elements consider the padding box of the main element as a reference. So, if the main element has a border, you need to take that into account when defining the pseudo-element styles. You will notice that I am using inset: -2px on ::after to account for the border defined on the main element.

As I said, this solution is probably good enough in a majority of cases where you want a gradient shadow, as long as you don’t need to support transparency. But we are here for the challenge and to push the limits, so even if you don’t need what is coming next, stay with me. You will probably learn new CSS tricks that you can use elsewhere.

Transparent solution

Let’s pick up where we left off on the 3D transform and remove the background from the main element. I will start with a shadow that has both offsets and spread distance equal to 0.

CodePen Embed Fallback

The idea is to find a way to cut or hide everything inside the area of the element (inside the green border) while keeping what is outside. We are going to use clip-path for that. But you might wonder how clip-path can make a cut inside an element.

Indeed, there’s no way to do that, but we can simulate it using a particular polygon pattern:

clip-path: polygon(-100vmax -100vmax,100vmax -100vmax,100vmax 100vmax,-100vmax 100vmax,-100vmax -100vmax,0 0,0 100%,100% 100%,100% 0,0 0) CodePen Embed Fallback

Tada! We have a gradient shadow that supports transparency. All we did is add a clip-path to the previous code. Here is a figure to illustrate the polygon part.

The blue area is the visible part after applying the clip-path. I am only using the blue color to illustrate the concept, but in reality, we will only see the shadow inside that area. As you can see, we have four points defined with a big value (B). My big value is 100vmax, but it can be any big value you want. The idea is to ensure we have enough space for the shadow. We also have four points that are the corners of the pseudo-element.

The arrows illustrate the path that defines the polygon. We start from (-B, -B) until we reach (0,0). In total, we need 10 points. Not eight points because two points are repeated twice in the path ((-B,-B) and (0,0)).

There’s still one more thing left for us to do, and it’s to account for the spread distance and the offsets. The only reason the demo above works is because it is a particular case where the offsets and spread distance are equal to 0.

Let’s define the spread and see what happens. Remember that we use inset with a negative value to do this:

CodePen Embed Fallback

The pseudo-element is now bigger than the main element, so the clip-path cuts more than we need it to. Remember, we always need to cut the part inside the main element (the area inside the green border of the example). We need to adjust the position of the four points inside of clip-path.

.box { --s: 10px; /* the spread */ position: relative; } .box::before { inset: calc(-1 * var(--s)); clip-path: polygon( -100vmax -100vmax, 100vmax -100vmax, 100vmax 100vmax, -100vmax 100vmax, -100vmax -100vmax, calc(0px + var(--s)) calc(0px + var(--s)), calc(0px + var(--s)) calc(100% - var(--s)), calc(100% - var(--s)) calc(100% - var(--s)), calc(100% - var(--s)) calc(0px + var(--s)), calc(0px + var(--s)) calc(0px + var(--s)) ); }

We’ve defined a CSS variable, --s, for the spread distance and updated the polygon points. I didn’t touch the points where I am using the big value. I only update the points that define the corners of the pseudo-element. I increase all the zero values by --s and decrease the 100% values by --s.

CodePen Embed Fallback

It’s the same logic with the offsets. When we translate the pseudo-element, the shadow is out of alignment, and we need to rectify the polygon again and move the points in the opposite direction.

.box { --s: 10px; /* the spread */ --x: 10px; /* X offset */ --y: 8px; /* Y offset */ position: relative; } .box::before { inset: calc(-1 * var(--s)); transform: translate3d(var(--x), var(--y), -1px); clip-path: polygon( -100vmax -100vmax, 100vmax -100vmax, 100vmax 100vmax, -100vmax 100vmax, -100vmax -100vmax, calc(0px + var(--s) - var(--x)) calc(0px + var(--s) - var(--y)), calc(0px + var(--s) - var(--x)) calc(100% - var(--s) - var(--y)), calc(100% - var(--s) - var(--x)) calc(100% - var(--s) - var(--y)), calc(100% - var(--s) - var(--x)) calc(0px + var(--s) - var(--y)), calc(0px + var(--s) - var(--x)) calc(0px + var(--s) - var(--y)) ); }

There are two more variables for the offsets: --x and --y. We use them inside of transform and we also update the clip-path values. We still don’t touch the polygon points with big values, but we offset all the others — we reduce --x from the X coordinates, and --y from the Y coordinates.

Now all we have to do is to update a few variables to control the gradient shadow. And while we are at it, let’s also make the blur radius a variable as well:

CodePen Embed Fallback

Do we still need the 3D transform trick?

It all depends on the border. Don’t forget that the reference for a pseudo-element is the padding box, so if you apply a border to your main element, you will have an overlap. You either keep the 3D transform trick or update the inset value to account for the border.

Here is the previous demo with an updated inset value in place of the 3D transform:

CodePen Embed Fallback

I‘d say this is a more suitable way to go because the spread distance will be more accurate, as it starts from the border-box instead of the padding-box. But you will need to adjust the inset value according to the main element’s border. Sometimes, the border of the element is unknown and you have to use the previous solution.

With the earlier non-transparent solution, it’s possible you will face a stacking context issue. And with the transparent solution, it’s possible you face a border issue instead. Now you have options and ways to work around those issues. The 3D transform trick is my favorite solution because it fixes all the issues (The online generator will consider it as well)

Adding a border radius

If you try adding border-radius to the element when using the non-transparent solution we started with, it is a fairly trivial task. All you need to do is to inherit the same value from the main element, and you are done.

CodePen Embed Fallback

Even if you don’t have a border radius, it’s a good idea to define border-radius: inherit. That accounts for any potential border-radius you might want to add later or a border radius that comes from somewhere else.

It’s a different story when dealing with the transparent solution. Unfortunately, it means finding another solution because clip-path cannot deal with curvatures. That means we won’t be able to cut the area inside the main element.

We will introduce the mask property to the mix.

This part was very tedious, and I struggled to find a general solution that doesn’t rely on magic numbers. I ended up with a very complex solution that uses only one pseudo-element, but the code was a lump of spaghetti that covers only a few particular cases. I don’t think it is worth exploring that route.

I decided to insert an extra element for the sake of simpler code. Here’s the markup:

<div class="box"> <sh></sh> </div>

I am using a custom element, <sh>, to avoid any potential conflict with external CSS. I could have used a <div>, but since it’s a common element, it can easily be targeted by another CSS rule coming from somewhere else that can break our code.

The first step is to position the <sh> element and purposely create an overflow:

.box { --r: 50px; position: relative; border-radius: var(--r); } .box sh { position: absolute; inset: -150px; border: 150px solid #0000; border-radius: calc(150px + var(--r)); }

The code may look a bit strange, but we’ll get to the logic behind it as we go. Next, we create the gradient shadow using a pseudo-element of <sh>.

.box { --r: 50px; position: relative; border-radius: var(--r); transform-style: preserve-3d; } .box sh { position: absolute; inset: -150px; border: 150px solid #0000; border-radius: calc(150px + var(--r)); transform: translateZ(-1px) } .box sh::before { content: ""; position: absolute; inset: -5px; border-radius: var(--r); background: /* Your gradient */; filter: blur(10px); transform: translate(10px,8px); }

As you can see, the pseudo-element uses the same code as all the previous examples. The only difference is the 3D transform defined on the <sh> element instead of the pseudo-element. For the moment, we have a gradient shadow without the transparency feature:

CodePen Embed Fallback

Note that the area of the <sh> element is defined with the black outline. Why I am doing this? Because that way, I am able to apply a mask on it to hide the part inside the green area and keep the overflowing part where we need to see the shadow.

I know it’s a bit tricky, but unlike clip-path, the mask property doesn’t account for the area outside an element to show and hide things. That’s why I was obligated to introduce the extra element — to simulate the “outside” area.

Also, note that I am using a combination of border and inset to define that area. This allows me to keep the padding-box of that extra element the same as the main element so that the pseudo-element won’t need additional calculations.

Another useful thing we get from using an extra element is that the element is fixed, and only the pseudo-element is moving (using translate). This will allow me to easily define the mask, which is the last step of this trick.

mask: linear-gradient(#000 0 0) content-box, linear-gradient(#000 0 0); mask-composite: exclude; CodePen Embed Fallback

It’s done! We have our gradient shadow, and it supports border-radius! You probably expected a complex mask value with oodles of gradients, but no! We only need two simple gradients and a mask-composite to complete the magic.

Let’s isolate the <sh> element to understand what is happening there:

.box sh { position: absolute; inset: -150px; border: 150px solid red; background: lightblue; border-radius: calc(150px + var(--r)); }

Here’s what we get:

CodePen Embed Fallback

Note how the inner radius matches the main element’s border-radius. I have defined a big border (150px) and a border-radius equal to the big border plus the main element’s radius. On the outside, I have a radius equal to 150px + R. On the inside, I have 150px + R - 150px = R.

We must hide the inner (blue) part and make sure the border (red) part is still visible. To do that, I’ve defined two mask layers —One that covers only the content-box area and another that covers the border-box area (the default value). Then I excluded one from another to reveal the border.

mask: linear-gradient(#000 0 0) content-box, linear-gradient(#000 0 0); mask-composite: exclude; CodePen Embed Fallback

I used the same technique to create a border that supports gradients and border-radius. Ana Tudor has also a good article about masking composite that I invite you to read.

Are there any drawbacks to this method?

Yes, this definitely not perfect. The first issue you may face is related to using a border on the main element. This may create a small misalignment in the radii if you don’t account for it. We have this issue in our example, but perhaps you can hardly notice it.

The fix is relatively easy: Add the border’s width for the <sh> element’s inset.

.box { --r: 50px; border-radius: var(--r); border: 2px solid; } .box sh { position: absolute; inset: -152px; /* 150px + 2px */ border: 150px solid #0000; border-radius: calc(150px + var(--r)); }

Another drawback is the big value we’re using for the border (150px in the example). This value should be big enough to contain the shadow but not too big to avoid overflow and scrollbar issues. Luckily, the online generator will calculate the optimal value considering all the parameters.

The last drawback I am aware of is when you’re working with a complex border-radius. For example, if you want a different radius applied to each corner, you must define a variable for each side. It’s not really a drawback, I suppose, but it can make your code a bit tougher to maintain.

.box { --r-top: 10px; --r-right: 40px; --r-bottom: 30px; --r-left: 20px; border-radius: var(--r-top) var(--r-right) var(--r-bottom) var(--r-left); } .box sh { border-radius: calc(150px + var(--r-top)) calc(150px + var(--r-right)) calc(150px + var(--r-bottom)) calc(150px + var(--r-left)); } .box sh:before { border-radius: var(--r-top) var(--r-right) var(--r-bottom) var(--r-left); } CodePen Embed Fallback

The online generator only considers a uniform radius for the sake of simplicity, but you now know how to modify the code if you want to consider a complex radius configuration.

Wrapping up

We’ve reached the end! The magic behind gradient shadows is no longer a mystery. I tried to cover all the possibilities and any possible issues you might face. If I missed something or you discover any issue, please feel free to report it in the comment section, and I’ll check it out.

Again, a lot of this is likely overkill considering that the de facto solution will cover most of your use cases. Nevertheless, it’s good to know the “why” and “how” behind the trick, and how to overcome its limitations. Plus, we got good exercise playing with CSS clipping and masking.

And, of course, you have the online generator you can reach for anytime you want to avoid the hassle.

Different Ways to Get CSS Gradient Shadows originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Healthcare, Selling Lemons, and the Price of Developer Experience

Css Tricks - Thu, 02/09/2023 - 9:45am

Every now and then, a one blog post is published and it spurs a reaction or response in others that are, in turn, published as blogs posts, and a theme starts to emerge. That’s what happened this past week and the theme developed around the cost of JavaScript frameworks — a cost that, in this case, reveals just how darn important it is to use JavaScript responsibly.

Eric Bailey: Modern Health, frameworks, performance, and harm

This is where the story begins. Eric goes to a health service provider website to book an appointment and gets… a blank screen.

In addition to a terrifying amount of telemetry, Modern Health’s customer-facing experience is delivered using React and Webpack.

If you are familiar with how the web is built, what happened is pretty obvious: A website that over-relies on JavaScript to power its experience had its logic collide with one or more other errant pieces of logic that it summons. This created a deadlock.

If you do not make digital experiences for a living, what happened is not obvious at all. All you see is a tiny fake loading spinner that never stops.

D’oh. This might be mere nuisance — or even laughable — in some situations, but not when someone’s health is on the line:

A person seeking help in a time of crisis does not care about TypeScript, tree shaking, hot module replacement, A/B tests, burndown charts, NPS, OKRs, KPIs, or other startup jargon. Developer experience does not count for shit if the person using the thing they built can’t actually get what they need.

This is the big smack of reality. What happens when our tooling and reporting — the very things that are supposed to make our work more effective — get in the way of the user experience? These are tools that provide insights that can help us anticipate a user’s needs, especially in a time of need.

I realize that pointing the finger at JavaScript frameworks is already divisive. But this goes beyond whether you use React or framework d’jour. It’s about business priorities and developer experience conflicting with user experiences.

Alex Russell: The Market for Lemons

Partisans for slow, complex frameworks have successfully marketed lemons as the hot new thing, despite the pervasive failures in their wake, crowding out higher-quality options in the process.

These technologies were initially pitched on the back of “better user experiences”, but have utterly failed to deliver on that promise outside of the high-management-maturity organisations in which they were born. Transplanted into the wider web, these new stacks have proven to be expensive duds.

There’s the rub. Alex ain’t mincing words, but notice that the onus is on the way frameworks haved been marketed to developers than developers themselves. The sales pitch?

Once the lemon sellers embed the data-light idea that improved “Developer Experience” (“DX”) leads to better user outcomes, improving “DX” became and end unto itself, and many who knew better felt forced to play along. The long lead times in falsifying trickle-down UX was a feature, not a bug; they don’t need you to succeed, only to keep buying.

As marketing goes, the “DX” bait-and-switch is brilliant, but the tech isn’t delivering for anyone but developers.

Tough to stomach, right? No one wants to be duped, and it’s tough to admit a sunken cost when there is one. It gets downright personal if you’ve invested time in a specific piece of tech and effort integrating it into your stack. Development workflows are hard and settling into one is sorta like settling into a house you plan on living in a little while. But you’d want to know if your house was built on what Alex calls a “sandy foundation”.

I’d just like to pause here a moment to say I have no skin in this debate. As a web generalist, I tend to adopt new tools early for familiarity then drop them fast, relegating them to my toolshed until I find a good use for them. In other words, my knowledge is wide but not very deep in one area or thing. HTML, CSS, and JavaScript is my go-to cocktail, but I do care a great deal about user experience and know when to reach for a tool to solve a particular thing.

And let’s acknowledge that not everyone has a say in the matter. Many of us work on managed teams that are prescribed the tools we use. Alex says as much, which I think is important to call out because it’s clear this isn’t meant to be personal. It’s a statement on our priorities and making sure they along to user expectations.

Let’s alow Chris to steer us back to the story…

Chris Coyier: End-To-End Tests with Content Blockers?

So, maybe your app is built on React and it doesn’t matter why it’s that way. There’s still work to do to ensure the app is reliable and accessible.

Just blocking a file shouldn’t totally wreck a website, but it often does! In JavaScript, that may be because the developers have written first-party JavaScript (which I’ll generally allow) that depends on third-party JavaScript (which I’ll generally block).


If I block resources from, now my first-party JavaScript is going to throw an error. JavaScript isn’t chill. If an error is thrown, it doesn’t execute more JavaScript further down in the file. If further down in that file is transitionToOnboarding();— that ain’t gonna work.

Maybe it’s worth revisiting your workflow and tweaking it to account to identify more points of failure.

So here’s an idea: Run your end-to-end tests in browsers that have popular content blockers with default configs installed. 

Doing so may uncover problems like this that stop your customers, and indeed people in need, from being stopped in their tracks.

Good idea! Hey, anything that helps paint a more realistic picture of how the app is used. That sort of clarity could happen a lot earlier in the process, perhaps before settling on development decisions. Know your users. Why are they using the app? How do they browse the web? Where are they phsically located? What problems could get in their way? Chris has a great talk on that, too.

Healthcare, Selling Lemons, and the Price of Developer Experience originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

The truth about CSS selector performance

Css Tricks - Tue, 02/07/2023 - 5:59am

Geez, leave it to Patrick Brosset to talk CSS performance in the most approachable and practical way possible. Not that CSS is always what’s gunking up the speed, or even the lowest hanging fruit when it comes to improving performance.

But if you’re looking for gains on the CSS side of things, Patrick has a nice way of sniffing out your most expensive selectors using Edge DevTools:

  • Crack open DevTools.
  • Head to the Performance Tab.
  • Make sure you have the “Enable advanced rendering instrumentation” option enabled. This tripped me up in the process.
  • Record a page load.
  • Open up the “Bottom-Up” tab in the report.
  • Check out your the size of your recalculated styles.

From here, click on one of the Recalculated Style events in the Main waterfall view and you’ll get a new “Selector Stats” tab. Look at all that gooey goodness!

Now you see all of the selectors that were processed and they can be sorted by how long they took, how many times they matched, the number of matching attempts, and something called “fast reject count” which I learned is the number of elements that were easy and quick to eliminate from matching.

A lot of insights here if CSS is really the bottleneck that needs investigating. But read Patrick’s full post over on the Microsoft Edge Blog because he goes much deeper into the why’s and how’s, and walks through an entire case study.

To Shared LinkPermalink on CSS-Tricks

The truth about CSS selector performance originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

The Double Emphasis Thing

Css Tricks - Mon, 02/06/2023 - 5:06am

I used to have this boss who loved, loved, loved, loved to emphasize words. This was way back before we used a WYSIWYG editors and I’d have to handcode that crap.

<p> I used to have this boss who <em>loved</em>, <strong>loved</strong>, <strong><em>loved</em></strong>, <strong><em><u>loved</u></em></strong> to emphasize words. </p>

(Let’s not go into the colors he used for even MOAR emphasis.)

Writing all that markup never felt great. The effort it took, sure, whatever. But is it even a good idea to add overload content with double — or more! — emphases?

Different tags convey different emphasis

For starters, the <strong> and <em> tags are designed for different uses. We got them back in HTML5, where:

So, <strong> gives the content more weight in the sense it suggests that the content in it is important or urgent. Think of a warning:

Warning: The following content has been flagged for being awesome.

It might be tempting to reach for <em> to do the same thing. Italicized text can be attention-grabbing after all. But it’s really meant as a hint to use more emphasis when readingt the content in it. For example, here are two versions of the same sentence with the emphasis in different locations:

<p>I ate the <em>entire</em> plate of burritos.</p> <p>I ate the entire <em>plate</em> of burritos.</p>

Both examples stress emphasis, but on different words. And they would sound different if you were to read them out loud. That makes <em> a great way to express tone in your writing. It changes the meaning of the sentence in a way that <strong> does not.

Visual emphasis vs. semantic emphasis

Those are two things you gotta weigh when emphasizing content. Like, there are plenty of instances where you may need to italicize content without affecting the meaning of the sentence. But those can be handled with other tags that render italics:

  • <i>: This is the classic one! Before HTML5, this was used to stress emphasis with italics all over the place. Now, it’s purely used to italicize content visually without changing the semantic meaning.
  • <cite>: Indicating the source of a fact or figure. (“Source: CSS-Tricks“)
  • <address>: Used to mark up contact information, not only physical addresses, but things like email addresses and phone numbers too. (

It’s going to he the same thing with <strong>. Rather than using it for styling text you want to look heavier, it’s a better idea to use the classic <b> tag for boldfacing to avoid giving extra signficance to content that doesn’t need it. And remember, some elements like headings are already rendered in bold, thanks to the browser’s default styles. There’s no need to add even more strong emphasis.

Using italics in emphasized content (and vice versa)

There are legitimate cases where you may need to italicize part of a line that’s already emphasized. Or maybe add emphasis to a bit of text that’s already italicized.

A blockquote might be a good example. I’ve seen plenty of times where they are italicized for style, even though default browser styles don’t do it:

blockquote { font-style: italic; }

What if we need to mention a movie title in that blockquote? That should be italicized. There’s no stress emphasis needed, so an <i> tag will do. But it’s still weird to italicize something when it’s already rendered that way:

<blockquote> This movie’s opening weekend performance offers some insight in to its box office momentum as it fights to justify its enormous budget. In its first weekend, <i>Avatar: The Way of Water</i> made $134 million in North America alone and $435 million globally. </blockquote>

In a situation where we’re italicizing something within italicized content like this, we’re supposed to remove the italics from the nested element… <i> in this case.

blockquote i { font-style: normal; }

Container style queries will be super useful to nab all these instances if we get them:

blockquote { container-name: quote; font-style: italic; } @container quote (font-style: italic) { em, i, cite, address { font-style: normal; } }

This little snippet evaluates the blockquote to see if it’s font-style is set to italic. If it is, then it’ll make sure the <em>, <i>, <cite>, and <address> elements are rendered as normal text, while retaining the semantic meaning if there is one.

But back to emphasis within emphasis

I wouldn’t nest <strong> inside <em> like this:

<p>I ate the <em><strong>entire</strong></em> plate of burritos.</p>

…or nest <em> inside <strong> instead:

<p>I ate the <em><strong>entire</strong></em> plate of burritos.</p>

The rendering is fine! And it doesn’t matter what order they’re in… at least in modern browsers. Jennifer Kyrnin mentions that some browsers only render the tag nearest to the text, but I didn’t bump into that anywhere in my limited tests. But something to watch for!

The reason I wouldn’t nest one form of emphasis in another is because it simply isn’t needed. There is no grammar rule that calls for it. Like exclamation points, one form of emphasis is enough, and you ought to use the one that matches what you’re after whether it’s visual, weight, or announced emphasis.

And even though some screen readers are capable of announcing emphasized content, they won’t read the markup with any additional importance or emphasis. So, no additional accessibility perks either, as far as I can tell.

But I really want all the emphasis!

If you’re in the position where your boss is like mine and wants ALL the emphasis, I’d reach for the right HTML tag for the type of emphasis, then apply the rest of the styles with a mix of tags that don’t affect semantics with CSS to help account for anything browser styles won’t handle.

<style> /* If `em` contains `b` or `u` tags */ em:has(b, u) { color: #f8a100; } </style> <p> I used to have this boss who <em>loved</em>, <strong>loved</strong>, <strong><em>loved</em></strong>, <strong><em><u>loved</u></em></strong> to emphasize words. </p>

I might even do it with the <strong> tag too as a defensive measure:

/* If `em` contains `b` or `u` tags */ em:has(b, u), /* If `strong` contains `em` or `u` tags */ strong:has(i, u) { color: #f8a100; }

As long as we’re playing defense, we can identify errors where emphases are nested within emphases by highlighting them in red or something:

/* Highlight semantic emphases within semantic emphases */ em:has(strong), strong:has(em) { background: hsl(0deg 50% 50% / .25); border: 1px dashed hsl(0deg 50% 50% / .25); }

Then I’d probably use that snippet from the last section that removes the default italic styling from an element when it is nested in another italiczed element.

Anything else?


The Double Emphasis Thing originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

A Fancy Hover Effect For Your Avatar

Css Tricks - Fri, 02/03/2023 - 5:11am

Do you know that kind of effect where someone’s head is poking through a circle or hole? The famous Porky Pig animation where he waves goodbye while popping out of a series of red rings is the perfect example, and Kilian Valkhof actually re-created that here on CSS-Tricks a while back.

I have a similar idea but tackled a different way and with a sprinkle of animation. I think it’s pretty practical and makes for a neat hover effect you can use on something like your own avatar.

CodePen Embed Fallback

See that? We’re going to make a scaling animation where the avatar seems to pop right out of the circle it’s in. Cool, right? Don’t look at the code and let’s build this animation together step-by-step.

The HTML: Just one element

If you haven’t checked the code of the demo and you are wondering how many divs this’ll take, then stop right there, because our markup is nothing but a single image element:

<img src="" alt="">

Yes, a single element! The challenging part of this exercise is using the smallest amount of code possible. If you have been following me for a while, you should be used to this. I try hard to find CSS solutions that can be achieved with the smallest, most maintainable code possible.

I wrote a series of articles here on CSS-Tricks where I explore different hover effects using the same HTML markup containing a single element. I go into detail on gradients, masking, clipping, outlines, and even layout techniques. I highly recommend checking those out because I will re-use many of the tricks in this post.

An image file that’s square with a transparent background will work best for what we’re doing. Here’s the one I’m using if you want start with that.

Designed by Cang

I’m hoping to see lots of examples of this as possible using real images — so please share your final result in the comments when you’re done so we can build a collection!

Before jumping into CSS, let’s first dissect the effect. The image gets bigger on hover, so we’ll for sure use transform: scale() in there. There’s a circle behind the avatar, and a radial gradient should do the trick. Finally, we need a way to create a border at the bottom of the circle that creates the appearance of the avatar behind the circle.

Let’s get to work!

The scale effect

Let’s start by adding the transform:

img { width: 280px; aspect-ratio: 1; cursor: pointer; transition: .5s; } img:hover { transform: scale(1.35); } CodePen Embed Fallback

Nothing complicated yet, right? Let’s move on.

The circle

We said that the background would be a radial gradient. That’s perfect because we can create hard stops between the colors of a radial gradient, which make it look like we’re drawing a circle with solid lines.

img { --b: 5px; /* border width */ width: 280px; aspect-ratio: 1; background: radial-gradient( circle closest-side, #ECD078 calc(99% - var(--b)), #C02942 calc(100% - var(--b)) 99%, #0000 ); cursor: pointer; transition: .5s; } img:hover { transform: scale(1.35); }

Note the CSS variable, --b, I’m using there. It represents the thickness of the “border” which is really just being used to define the hard color stops for the red part of the radial gradient.

CodePen Embed Fallback

The next step is to play with the gradient size on hover. The circle needs to keep its size as the image grows. Since we are applying a scale() transformation, we actually need to decrease the size of the circle because it otherwise scales up with the avatar. So, while the image scales up, we need the gradient to scale down.

Let’s start by defining a CSS variable, --f, that defines the “scale factor”, and use it to set the size of the circle. I’m using 1 as the default value, as in that’s the initial scale for the image and the circle that we transform from.

Here is a demo to illustrate the trick. Hover to see what is happening behind the scenes:

CodePen Embed Fallback

I added a third color to the radial-gradient to better identify the area of the gradient on hover:

radial-gradient( circle closest-side, #ECD078 calc(99% - var(--b)), #C02942 calc(100% - var(--b)) 99%, lightblue );

Now we have to position our background at the center of the circle and make sure it takes up the full height. I like to declare everything directly on the background shorthand property, so we can add our background positioning and make sure it doesn’t repeat by tacking on those values right after the radial-gradient():

background: radial-gradient() 50% / calc(100% / var(--f)) 100% no-repeat;

The background is placed at the center (50%), has a width equal to calc(100%/var(--f)), and has a height equal to 100%.

Nothing scales when --f is equal to 1 — again, our initial scale. Meanwhile, the gradient takes up the full width of the container. When we increase --f, the element’s size grows — thanks to the scale() transform — and the gradient’s size decreases.

Here’s what we get when we apply all of this to our demo:

CodePen Embed Fallback

We’re getting closer! We have the overflow effect at the top, but we still need to hide the bottom part of the image, so it looks like it is popping out of the circle rather than sitting in front of it. That’s the tricky part of this whole thing and is what we’re going to do next.

The bottom border

I first tried tackling this with the border-bottom property, but I was unable to find a way to match the size of the border to the size to the circle. Here’s the best I could get and you can immediately see it’s wrong:

CodePen Embed Fallback

The actual solution is to use the outline property. Yes, outline, not border. In a previous article, I show how outline is powerful and allows us to create cool hover effects. Combined with outline-offset, we have exactly what we need for our effect.

The idea is to set an outline on the image and adjust its offset to create the bottom border. The offset will depend on the scaling factor the same way the gradient size did.

CodePen Embed Fallback

Now we have our bottom “border” (actually an outline) combined with the “border” created by the gradient to create a full circle. We still need to hide portions of the outline (from the top and the sides), which we’ll get to in a moment.

Here’s our code so far, including a couple more CSS variables you can use to configure the image size (--s) and the “border” color (--c):

img { --s: 280px; /* image size */ --b: 5px; /* border thickness */ --c: #C02942; /* border color */ --f: 1; /* initial scale */ width: var(--s); aspect-ratio: 1; cursor: pointer; border-radius: 0 0 999px 999px; outline: var(--b) solid var(--c); outline-offset: calc((1 / var(--f) - 1) * var(--s) / 2 - var(--b)); background: radial-gradient( circle closest-side, #ECD078 calc(99% - var(--b)), var(--c) calc(100% - var(--b)) 99%, #0000 ) 50% / calc(100% / var(--f)) 100% no-repeat; transform: scale(var(--f)); transition: .5s; } img:hover { --f: 1.35; /* hover scale */ }

Since we need a circular bottom border, we added a border-radius on the bottom side, allowing the outline to match the curvature of the gradient.

The calculation used on outline-offset is a lot more straightforward than it looks. By default, outline is drawn outside of the element’s box. And in our case, we need it to overlap the element. More precisely, we need it to follow the circle created by the gradient.

When we scale the element, we see the space between the circle and the edge. Let’s not forget that the idea is to keep the circle at the same size after the scale transformation runs, which leaves us with the space we will use to define the outline’s offset as illustrated in the above figure.

Let’s not forget that the second element is scaled, so our result is also scaled… which means we need to divide the result by f to get the real offset value:

Offset = ((f - 1) * S/2) / f = (1 - 1/f) * S/2

We add a negative sign since we need the outline to go from the outside to the inside:

Offset = (1/f - 1) * S/2

Here’s a quick demo that shows how the outline follows the gradient:

CodePen Embed Fallback

You may already see it, but we still need the bottom outline to overlap the circle rather than letting it bleed through it. We can do that by removing the border’s size from the offset:

outline-offset: calc((1 / var(--f) - 1) * var(--s) / 2) - var(--b)); CodePen Embed Fallback

Now we need to find how to remove the top part from the outline. In other words, we only want the bottom part of the image’s outline.

First, let’s add space at the top with padding to help avoid the overlap at the top:

img { --s: 280px; /* image size */ --b: 5px; /* border thickness */ --c: #C02942; /* border color */ --f: 1; /* initial scale */ width: var(--s); aspect-ratio: 1; padding-block-start: calc(var(--s)/5); /* etc. */ } img:hover { --f: 1.35; /* hover scale */ } CodePen Embed Fallback

There is no particular logic to that top padding. The idea is to ensure the outline doesn’t touch the avatar’s head. I used the element’s size to define that space to always have the same proportion.

Note that I have added the content-box value to the background:

background: radial-gradient( circle closest-side, #ECD078 calc(99% - var(--b)), var(--c) calc(100% - var(--b)) 99%, #0000 ) 50%/calc(100%/var(--f)) 100% no-repeat content-box;

We need this because we added padding and we only want the background set to the content box, so we must explicitly tell the background to stop there.

Adding CSS mask to the mix

We reached the last part! All we need to do is to hide some pieces, and we are done. For this, we will rely on the mask property and, of course, gradients.

Here is a figure to illustrate what we need to hide or what we need to show to be more accurate

The left image is what we currently have, and the right is what we want. The green part illustrates the mask we must apply to the original image to get the final result.

We can identify two parts of our mask:

  • A circular part at the bottom that has the same dimension and curvature as the radial gradient we used to create the circle behind the avatar
  • A rectangle at the top that covers the area inside the outline. Notice how the outline is outside the green area at the top — that’s the most important part, as it allows the outline to be cut so that only the bottom part is visible.

Here’s our final CSS:

img { --s: 280px; /* image size */ --b: 5px; /* border thickness */ --c: #C02942; /* border color */ --f: 1; /* initial scale */ --_g: 50% / calc(100% / var(--f)) 100% no-repeat content-box; --_o: calc((1 / var(--f) - 1) * var(--s) / 2 - var(--b)); width: var(--s); aspect-ratio: 1; padding-top: calc(var(--s)/5); cursor: pointer; border-radius: 0 0 999px 999px; outline: var(--b) solid var(--c); outline-offset: var(--_o); background: radial-gradient( circle closest-side, #ECD078 calc(99% - var(--b)), var(--c) calc(100% - var(--b)) 99%, #0000) var(--_g); mask: linear-gradient(#000 0 0) no-repeat 50% calc(-1 * var(--_o)) / calc(100% / var(--f) - 2 * var(--b)) 50%, radial-gradient( circle closest-side, #000 99%, #0000) var(--_g); transform: scale(var(--f)); transition: .5s; } img:hover { --f: 1.35; /* hover scale */ }

Let’s break down that mask property. For starters, notice that a similar radial-gradient() from the background property is in there. I created a new variable, --_g, for the common parts to make things less cluttered.

--_g: 50% / calc(100% / var(--f)) 100% no-repeat content-box; mask: radial-gradient( circle closest-side, #000 99%, #0000) var(--_g);

Next, there’s a linear-gradient() in there as well:

--_g: 50% / calc(100% / var(--f)) 100% no-repeat content-box; mask: linear-gradient(#000 0 0) no-repeat 50% calc(-1 * var(--_o)) / calc(100% / var(--f) - 2 * var(--b)) 50%, radial-gradient( circle closest-side, #000 99%, #0000) var(--_g);

This creates the rectangle part of the mask. Its width is equal to the radial gradient’s width minus twice the border thickness:

calc(100% / var(--f) - 2 * var(--b))

The rectangle’s height is equal to half, 50%, of the element’s size.

We also need the linear gradient placed at the horizontal center (50%) and offset from the top by the same value as the outline’s offset. I created another CSS variable, --_o, for the offset we previously defined:

--_o: calc((1 / var(--f) - 1) * var(--s) / 2 - var(--b));

One of the confusing things here is that we need a negative offset for the outline (to move it from outside to inside) but a positive offset for the gradient (to move from top to bottom). So, if you’re wondering why we multiply the offset, --_o, by -1, well, now you know!

Here is a demo to illustrate the mask’s gradient configuration:

CodePen Embed Fallback

Hover the above and see how everything move together. The middle box illustrates the mask layer composed of two gradients. Imagine it as the visible part of the left image, and you get the final result on the right!

Wrapping up

Oof, we’re done! And not only did we wind up with a slick hover animation, but we did it all with a single HTML <img> element. Just that and less than 20 lines of CSS trickery!

Sure, we relied on some little tricks and math formulas to reach such a complex effect. But we knew exactly what to do since we identified the pieces we needed up-front.

Could we have simplified the CSS if we allowed ourselves more HTML? Absolutely. But we’re here to learn new CSS tricks! This was a good exercise to explore CSS gradients, masking, the outline property’s behavior, transformations, and a whole bunch more. If you felt lost at any point, then definitely check out my series that uses the same general concepts. It sometimes helps to see more examples and use cases to drive a point home.

I will leave you with one last demo that uses photos of popular CSS developers. Don’t forget to show me a demo with your own image so I can add it to the collection!

CodePen Embed Fallback

A Fancy Hover Effect For Your Avatar originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Steven Heller’s Font of the Month: Horizona

Typography - Wed, 02/01/2023 - 7:01am

Read the book, Typographic Firsts

Steven Heller takes a closer look at Anita Jürgeleit’s wonderful Horizona font family.

The post Steven Heller’s Font of the Month: Horizona appeared first on I Love Typography.

Caching Data in SvelteKit

Css Tricks - Wed, 02/01/2023 - 5:04am

My previous post was a broad overview of SvelteKit where we saw what a great tool it is for web development. This post will fork off what we did there and dive into every developer’s favorite topic: caching. So, be sure to give my last post a read if you haven’t already. The code for this post is available on GitHub, as well as a live demo.

This post is all about data handling. We’ll add some rudimentary search functionality that will modify the page’s query string (using built-in SvelteKit features), and re-trigger the page’s loader. But, rather than just re-query our (imaginary) database, we’ll add some caching so re-searching prior searches (or using the back button) will show previously retrieved data, quickly, from cache. We’ll look at how to control the length of time the cached data stays valid and, more importantly, how to manually invalidate all cached values. As icing on the cake, we’ll look at how we can manually update the data on the current screen, client-side, after a mutation, while still purging the cache.

This will be a longer, more difficult post than most of what I usually write since we’re covering harder topics. This post will essentially show you how to implement common features of popular data utilities like react-query; but instead of pulling in an external library, we’ll only be using the web platform and SvelteKit features.

Unfortunately, the web platform’s features are a bit lower level, so we’ll be doing a bit more work than you might be used to. The upside is we won’t need any external libraries, which will help keep bundle sizes nice and small. Please don’t use the approaches I’m going to show you unless you have a good reason to. Caching is easy to get wrong, and as you’ll see, there’s a bit of complexity that’ll result in your application code. Hopefully your data store is fast, and your UI is fine allowing SvelteKit to just always request the data it needs for any given page. If it is, leave it alone. Enjoy the simplicity. But this post will show you some tricks for when that stops being the case.

Speaking of react-query, it was just released for Svelte! So if you find yourself leaning on manual caching techniques a lot, be sure to check that project out, and see if it might help.

Setting up

Before we start, let’s make a few small changes to the code we had before. This will give us an excuse to see some other SvelteKit features and, more importantly, set us up for success.

First, let’s move our data loading from our loader in +page.server.js to an API route. We’ll create a +server.js file in routes/api/todos, and then add a GET function. This means we’ll now be able to fetch (using the default GET verb) to the /api/todos path. We’ll add the same data loading code as before.

import { json } from "@sveltejs/kit"; import { getTodos } from "$lib/data/todoData"; export async function GET({ url, setHeaders, request }) { const search = url.searchParams.get("search") || ""; const todos = await getTodos(search); return json(todos); }

Next, let’s take the page loader we had, and simply rename the file from +page.server.js to +page.js (or .ts if you’ve scaffolded your project to use TypeScript). This changes our loader to be a “universal” loader rather than a server loader. The SvelteKit docs explain the difference, but a universal loader runs on both the server and also the client. One advantage for us is that the fetch call into our new endpoint will run right from our browser (after the initial load), using the browser’s native fetch function. We’ll add standard HTTP caching in a bit, but for now, all we’ll do is call the endpoint.

export async function load({ fetch, url, setHeaders }) { const search = url.searchParams.get("search") || ""; const resp = await fetch(`/api/todos?search=${encodeURIComponent(search)}`); const todos = await resp.json(); return { todos, }; }

Now let’s add a simple form to our /list page:

<div class="search-form"> <form action="/list"> <label>Search</label> <input autofocus name="search" /> </form> </div>

Yep, forms can target directly to our normal page loaders. Now we can add a search term in the search box, hit Enter, and a “search” term will be appended to the URL’s query string, which will re-run our loader and search our to-do items.

Let’s also increase the delay in our todoData.js file in /lib/data. This will make it easy to see when data are and are not cached as we work through this post.

export const wait = async amount => new Promise(res => setTimeout(res, amount ?? 500));

Remember, the full code for this post is all on GitHub, if you need to reference it.

Basic caching

Let’s get started by adding some caching to our /api/todos endpoint. We’ll go back to our +server.js file and add our first cache-control header.

setHeaders({ "cache-control": "max-age=60", });

…which will leave the whole function looking like this:

export async function GET({ url, setHeaders, request }) { const search = url.searchParams.get("search") || ""; setHeaders({ "cache-control": "max-age=60", }); const todos = await getTodos(search); return json(todos); }

We’ll look at manual invalidation shortly, but all this function says is to cache these API calls for 60 seconds. Set this to whatever you want, and depending on your use case, stale-while-revalidate might also be worth looking into.

And just like that, our queries are caching.

Note make sure you un-check the checkbox that disables caching in dev tools.

Remember, if your initial navigation on the app is the list page, those search results will be cached internally to SvelteKit, so don’t expect to see anything in DevTools when returning to that search.

What is cached, and where

Our very first, server-rendered load of our app (assuming we start at the /list page) will be fetched on the server. SvelteKit will serialize and send this data down to our client. What’s more, it will observe the Cache-Control header on the response, and will know to use this cached data for that endpoint call within the cache window (which we set to 60 seconds in put example).

After that initial load, when you start searching on the page, you should see network requests from your browser to the /api/todos list. As you search for things you’ve already searched for (within the last 60 seconds), the responses should load immediately since they’re cached.

What’s especially cool with this approach is that, since this is caching via the browser’s native caching, these calls could (depending on how you manage the cache busting we’ll be looking at) continue to cache even if you reload the page (unlike the initial server-side load, which always calls the endpoint fresh, even if it did it within the last 60 seconds).

Obviously data can change anytime, so we need a way to purge this cache manually, which we’ll look at next.

Cache invalidation

Right now, data will be cached for 60 seconds. No matter what, after a minute, fresh data will be pulled from our datastore. You might want a shorter or longer time period, but what happens if you mutate some data and want to clear your cache immediately so your next query will be up to date? We’ll solve this by adding a query-busting value to the URL we send to our new /todos endpoint.

Let’s store this cache busting value in a cookie. That value can be set on the server but still read on the client. Let’s look at some sample code.

We can create a +layout.server.js file at the very root of our routes folder. This will run on application startup, and is a perfect place to set an initial cookie value.

export function load({ cookies, isDataRequest }) { const initialRequest = !isDataRequest; const cacheValue = initialRequest ? +new Date() : cookies.get("todos-cache"); if (initialRequest) { cookies.set("todos-cache", cacheValue, { path: "/", httpOnly: false }); } return { todosCacheBust: cacheValue, }; }

You may have noticed the isDataRequest value. Remember, layouts will re-run anytime client code calls invalidate(), or anytime we run a server action (assuming we don’t turn off default behavior). isDataRequest indicates those re-runs, and so we only set the cookie if that’s false; otherwise, we send along what’s already there.

The httpOnly: false flag is also significant. This allows our client code to read these cookie values in document.cookie. This would normally be a security concern, but in our case these are meaningless numbers that allow us to cache or cache bust.

Reading cache values

Our universal loader is what calls our /todos endpoint. This runs on the server or the client, and we need to read that cache value we just set up no matter where we are. It’s relatively easy if we’re on the server: we can call await parent() to get the data from parent layouts. But on the client, we’ll need to use some gross code to parse document.cookie:

export function getCookieLookup() { if (typeof document !== "object") { return {}; } return document.cookie.split("; ").reduce((lookup, v) => { const parts = v.split("="); lookup[parts[0]] = parts[1]; return lookup; }, {}); } const getCurrentCookieValue = name => { const cookies = getCookieLookup(); return cookies[name] ?? ""; };

Fortunately, we only need it once.

Sending out the cache value

But now we need to send this value to our /todos endpoint.

import { getCurrentCookieValue } from "$lib/util/cookieUtils"; export async function load({ fetch, parent, url, setHeaders }) { const parentData = await parent(); const cacheBust = getCurrentCookieValue("todos-cache") || parentData.todosCacheBust; const search = url.searchParams.get("search") || ""; const resp = await fetch(`/api/todos?search=${encodeURIComponent(search)}&cache=${cacheBust}`); const todos = await resp.json(); return { todos, }; }

getCurrentCookieValue('todos-cache') has a check in it to see if we’re on the client (by checking the type of document), and returns nothing if we are, at which point we know we’re on the server. Then it uses the value from our layout.

Busting the cache

But how do we actually update that cache busting value when we need to? Since it’s stored in a cookie, we can call it like this from any server action:

cookies.set("todos-cache", cacheValue, { path: "/", httpOnly: false }); The implementation

It’s all downhill from here; we’ve done the hard work. We’ve covered the various web platform primitives we need, as well as where they go. Now let’s have some fun and write application code to tie it all together.

For reasons that’ll become clear in a bit, let’s start by adding an editing functionality to our /list page. We’ll add this second table row for each todo:

import { enhance } from "$app/forms"; <tr> <td colspan="4"> <form use:enhance method="post" action="?/editTodo"> <input name="id" value="{}" type="hidden" /> <input name="title" value="{t.title}" /> <button>Save</button> </form> </td> </tr>

And, of course, we’ll need to add a form action for our /list page. Actions can only go in .server pages, so we’ll add a +page.server.js in our /list folder. (Yes, a +page.server.js file can co-exist next to a +page.js file.)

import { getTodo, updateTodo, wait } from "$lib/data/todoData"; export const actions = { async editTodo({ request, cookies }) { const formData = await request.formData(); const id = formData.get("id"); const newTitle = formData.get("title"); await wait(250); updateTodo(id, newTitle); cookies.set("todos-cache", +new Date(), { path: "/", httpOnly: false }); }, };

We’re grabbing the form data, forcing a delay, updating our todo, and then, most importantly, clearing our cache bust cookie.

Let’s give this a shot. Reload your page, then edit one of the to-do items. You should see the table value update after a moment. If you look in the Network tab in DevToold, you’ll see a fetch to the /todos endpoint, which returns your new data. Simple, and works by default.

Immediate updates

What if we want to avoid that fetch that happens after we update our to-do item, and instead, update the modified item right on the screen?

This isn’t just a matter of performance. If you search for “post” and then remove the word “post” from any of the to-do items in the list, they’ll vanish from the list after the edit since they’re no longer in that page’s search results. You could make the UX better with some tasteful animation for the exiting to-do, but let’s say we wanted to not re-run that page’s load function but still clear the cache and update the modified to-do so the user can see the edit. SvelteKit makes that possible — let’s see how!

First, let’s make one little change to our loader. Instead of returning our to-do items, let’s return a writeable store containing our to-dos.

return { todos: writable(todos), };

Before, we were accessing our to-dos on the data prop, which we do not own and cannot update. But Svelte lets us return our data in their own store (assuming we’re using a universal loader, which we are). We just need to make one more tweak to our /list page.

Instead of this:

{#each todos as t}

…we need to do this since todos is itself now a store.:

{#each $todos as t}

Now our data loads as before. But since todos is a writeable store, we can update it.

First, let’s provide a function to our use:enhance attribute:

<form use:enhance={executeSave} on:submit={runInvalidate} method="post" action="?/editTodo" >

This will run before a submit. Let’s write that next:

function executeSave({ data }) { const id = data.get("id"); const title = data.get("title"); return async () => { todos.update(list => => { if ( == id) { return Object.assign({}, todo, { title }); } else { return todo; } }) ); }; }

This function provides a data object with our form data. We return an async function that will run after our edit is done. The docs explain all of this, but by doing this, we shut off SvelteKit’s default form handling that would have re-run our loader. This is exactly what we want! (We could easily get that default behavior back, as the docs explain.)

We now call update on our todos array since it’s a store. And that’s that. After editing a to-do item, our changes show up immediately and our cache is cleared (as before, since we set a new cookie value in our editTodo form action). So, if we search and then navigate back to this page, we’ll get fresh data from our loader, which will correctly exclude any updated to-do items that were updated.

The code for the immediate updates is available at GitHub.

Digging deeper

We can set cookies in any server load function (or server action), not just the root layout. So, if some data are only used underneath a single layout, or even a single page, you could set that cookie value there. Moreoever, if you’re not doing the trick I just showed manually updating on-screen data, and instead want your loader to re-run after a mutation, then you could always set a new cookie value right in that load function without any check against isDataRequest. It’ll set initially, and then anytime you run a server action that page layout will automatically invalidate and re-call your loader, re-setting the cache bust string before your universal loader is called.

Writing a reload function

Let’s wrap-up by building one last feature: a reload button. Let’s give users a button that will clear cache and then reload the current query.

We’ll add a dirt simple form action:

async reloadTodos({ cookies }) { cookies.set('todos-cache', +new Date(), { path: '/', httpOnly: false }); },

In a real project you probably wouldn’t copy/paste the same code to set the same cookie in the same way in multiple places, but for this post we’ll optimize for simplicity and readability.

Now let’s create a form to post to it:

<form method="POST" action="?/reloadTodos" use:enhance> <button>Reload todos</button> </form>

That works!

We could call this done and move on, but let’s improve this solution a bit. Specifically, let’s provide feedback on the page to tell the user the reload is happening. Also, by default, SvelteKit actions invalidate everything. Every layout, page, etc. in the current page’s hierarchy would reload. There might be some data that’s loaded once in the root layout that we don’t need to invalidate or re-load.

So, let’s focus things a bit, and only reload our to-dos when we call this function.

First, let’s pass a function to enhance:

<form method="POST" action="?/reloadTodos" use:enhance={reloadTodos}> import { enhance } from "$app/forms"; import { invalidate } from "$app/navigation"; let reloading = false; const reloadTodos = () => { reloading = true; return async () => { invalidate("reload:todos").then(() => { reloading = false; }); }; };

We’re setting a new reloading variable to true at the start of this action. And then, in order to override the default behavior of invalidating everything, we return an async function. This function will run when our server action is finished (which just sets a new cookie).

Without this async function returned, SvelteKit would invalidate everything. Since we’re providing this function, it will invalidate nothing, so it’s up to us to tell it what to reload. We do this with the invalidate function. We call it with a value of reload:todos. This function returns a promise, which resolves when the invalidation is complete, at which point we set reloading back to false.

Lastly, we need to sync our loader up with this new reload:todos invalidation value. We do that in our loader with the depends function:

export async function load({ fetch, url, setHeaders, depends }) { depends('reload:todos'); // rest is the same

And that’s that. depends and invalidate are incredibly useful functions. What’s cool is that invalidate doesn’t just take arbitrary values we provide like we did. We can also provide a URL, which SvelteKit will track, and invalidate any loaders that depend on that URL. To that end, if you’re wondering whether we could skip the call to depends and invalidate our /api/todos endpoint altogether, you can, but you have to provide the exact URL, including the search term (and our cache value). So, you could either put together the URL for the current search, or match on the path name, like this:

invalidate(url => url.pathname == "/api/todos");

Personally, I find the solution that uses depends more explicit and simple. But see the docs for more info, of course, and decide for yourself.

If you’d like to see the reload button in action, the code for it is in this branch of the repo.

Parting thoughts

This was a long post, but hopefully not overwhelming. We dove into various ways we can cache data when using SvelteKit. Much of this was just a matter of using web platform primitives to add the correct cache, and cookie values, knowledge of which will serve you in web development in general, beyond just SvelteKit.

Moreover, this is something you absolutely do not need all the time. Arguably, you should only reach for these sort of advanced features when you actually need them. If your datastore is serving up data quickly and efficiently, and you’re not dealing with any kind of scaling problems, there’s no sense in bloating your application code with needless complexity doing the things we talked about here.

As always, write clear, clean, simple code, and optimize when necessary. The purpose of this post was to provide you those optimization tools for when you truly need them. I hope you enjoyed it!

Caching Data in SvelteKit originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Syndicate content
©2003 - Present Akamai Design & Development.